Abstract:The Deepfake technology has raised serious concerns regarding privacy breaches and trust issues. To tackle these challenges, Deepfake detection technology has emerged. Current methods over-rely on the global feature space, which contains redundant information independent of the artifacts. As a result, existing Deepfake detection techniques suffer performance degradation when encountering unknown datasets. To reduce information redundancy, the current methods use disentanglement techniques to roughly separate the fake faces into artifacts and content information. However, these methods lack a solid disentanglement foundation and cannot guarantee the reliability of their disentangling process. To address these issues, a Deepfake detection method based on progressive disentangling and purifying blended identities is innovatively proposed in this paper. Based on the artifact generation mechanism, the coarse- and fine-grained strategies are combined to ensure the reliability of the disentanglement method. Our method aims to more accurately capture and separate artifact features in fake faces. Specifically, we first perform the coarse-grained disentangling on fake faces to obtain a pair of blended identities that require no additional annotation to distinguish between source face and target face. Then, the artifact features from each identity are separated to achieve fine-grained disentanglement. To obtain pure identity information and artifacts, an Identity-Artifact Correlation Compression module (IACC) is designed based on the information bottleneck theory, effectively reducing the potential correlation between identity information and artifacts. Additionally, an Identity-Artifact Separation Contrast Loss is designed to enhance the independence of artifact features post-disentangling. Finally, the classifier only focuses on pure artifact features to achieve a generalized Deepfake detector.
Abstract:Individuals, despite having varied life experiences and learning processes, can communicate effectively through languages. This study aims to explore the efficiency of language as a communication medium. We put forth two specific hypotheses: First, discrete messages are more effective than continuous ones when agents have diverse personal experiences. Second, communications using multiple discrete tokens are more advantageous than those using a single token. To valdate these hypotheses, we designed multi-agent machine learning experiments to assess communication efficiency using various information transmission methods between speakers and listeners. Our empirical findings indicate that, in scenarios where agents are exposed to different data, communicating through sentences composed of discrete tokens offers the best inter-agent communication efficiency. The limitations of our finding include lack of systematic advantages over other more sophisticated encoder-decoder model such as variational autoencoder and lack of evluation on non-image dataset, which we will leave for future studies.