Abstract:Large pre-trained models achieve remarkable success across diverse domains, yet fully fine-tuning incurs prohibitive computational and memory costs. Parameter-efficient fine-tuning (PEFT) has thus become a mainstream paradigm. Among them, Low-Rank Adaptation (LoRA) introduces trainable low-rank matrices and shows strong performance, nevertheless, its fixed-rank design limits flexibility. Dynamic rank allocation methods mitigate this issue by pruning redundant directions; however, they often rely on heuristic, element-level metrics that globally sort rank directions without matrix-wise distinction, and they lack mechanisms to expand capacity in layers requiring additional adaptation. To overcome these limitations, we propose FlexLoRA, an entropy-guided flexible low-rank adaptation framework that (i) evaluates matrix importance via spectral energy entropy, (ii) supports rank pruning and expansion under a global budget, and (iii) employs zero-impact initialization for newly added singular directions to ensure stability. By addressing granularity, flexibility, and stability limitations, FlexLoRA provides a more principled solution for PEFT. Extensive experiments show that FlexLoRA consistently outperforms state-of-the-art baselines across benchmarks. Codes are available at https://github.com/Chongjie-Si/Subspace-Tuning.
Abstract:Due to constraints on privacy, cost, and latency, on-premise deployment of small models is increasingly common. However, most practical pipelines stop at supervised fine-tuning (SFT) and fail to reach the reinforcement learning (RL) alignment stage. The main reason is that RL alignment typically requires either expensive human preference annotation or heavy reliance on high-quality reward models with large-scale API usage and ongoing engineering maintenance, both of which are ill-suited to on-premise settings. To bridge this gap, we propose a positive-unlabeled (PU) RL distillation method for on-premise small-model deployment. Without human-labeled preferences or a reward model, our method distills the teacher's preference-optimization capability from black-box generations into a locally trainable student. For each prompt, we query the teacher once to obtain an anchor response, locally sample multiple student candidates, and perform anchor-conditioned self-ranking to induce pairwise or listwise preferences, enabling a fully local training loop via direct preference optimization or group relative policy optimization. Theoretical analysis justifies that the induced preference signal by our method is order-consistent and concentrates on near-optimal candidates, supporting its stability for preference optimization. Experiments demonstrate that our method achieves consistently strong performance under a low-cost setting.
Abstract:As Large Language Models (LLMs) serve a global audience, alignment must transition from enforcing universal consensus to respecting cultural pluralism. We demonstrate that dense models, when forced to fit conflicting value distributions, suffer from \textbf{Mean Collapse}, converging to a generic average that fails to represent diverse groups. We attribute this to \textbf{Cultural Sparsity}, where gradient interference prevents dense parameters from spanning distinct cultural modes. To resolve this, we propose \textbf{\textsc{CuMA}} (\textbf{Cu}ltural \textbf{M}ixture of \textbf{A}dapters), a framework that frames alignment as a \textbf{conditional capacity separation} problem. By incorporating demographic-aware routing, \textsc{CuMA} internalizes a \textit{Latent Cultural Topology} to explicitly disentangle conflicting gradients into specialized expert subspaces. Extensive evaluations on WorldValuesBench, Community Alignment, and PRISM demonstrate that \textsc{CuMA} achieves state-of-the-art performance, significantly outperforming both dense baselines and semantic-only MoEs. Crucially, our analysis confirms that \textsc{CuMA} effectively mitigates mean collapse, preserving cultural diversity. Our code is available at https://github.com/Throll/CuMA.
Abstract:Label distribution learning (LDL) is a novel paradigm that describe the samples by label distribution of a sample. However, acquiring LDL dataset is costly and time-consuming, which leads to the birth of incomplete label distribution learning (IncomLDL). All the previous IncomLDL methods set the description degrees of "missing" labels in an instance to 0, but remains those of other labels unchanged. This setting is unrealistic because when certain labels are missing, the degrees of the remaining labels will increase accordingly. We fix this unrealistic setting in IncomLDL and raise a new problem: LDL with hidden labels (HidLDL), which aims to recover a complete label distribution from a real-world incomplete label distribution where certain labels in an instance are omitted during annotation. To solve this challenging problem, we discover the significance of proportional information of the observed labels and capture it by an innovative constraint to utilize it during the optimization process. We simultaneously use local feature similarity and the global low-rank structure to reveal the mysterious veil of hidden labels. Moreover, we theoretically give the recovery bound of our method, proving the feasibility of our method in learning from hidden labels. Extensive recovery and predictive experiments on various datasets prove the superiority of our method to state-of-the-art LDL and IncomLDL methods.




Abstract:Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations, which is an important yet challenging task. For large-scale HSIs, most methods rely on superpixel segmentation and perform superpixel-level clustering based on graph neural networks (GNNs). However, existing GNNs cannot fully exploit the spectral information of the input HSI, and the inaccurate superpixel topological graph may lead to the confusion of different class semantics during information aggregation. To address these challenges, we first propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels to improve their representation quality through the co-extraction of spatial and spectral features. Second, we propose an evidence-guided adaptive edge learning (EGAEL) module that adaptively predicts and refines edge weights in the superpixel topological graph. We integrate the proposed method into a contrastive learning framework to achieve clustering, where representation learning and clustering are simultaneously conducted. Experiments demonstrate that the proposed method improves clustering accuracy by 2.61%, 6.06%, 4.96% and 3.15% over the best compared methods on four HSI datasets. Our code is available at https://github.com/jhqi/SSGCO-EGAEL.
Abstract:Label distribution learning (LDL) is an effective method to predict the relative label description degree (a.k.a. label distribution) of a sample. However, the label distribution is not a complete representation of an instance because it overlooks the absolute intensity of each label. Specifically, it's impossible to obtain the total description degree of hidden labels that not in the label space, which leads to the loss of information and confusion in instances. To solve the above problem, we come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution and introduce it into the LDL process, forming the improved paradigm of concentration distribution learning. Moreover, we propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets. Extensive experiments prove that the proposed approach is able to extract background concentrations from label distributions while producing more accurate prediction results than the state-of-the-art LDL methods. The code is available in https://github.com/seutjw/CDL-LD.
Abstract:This paper studies the long-tailed semi-supervised learning (LTSSL) with distribution mismatch, where the class distribution of the labeled training data follows a long-tailed distribution and mismatches with that of the unlabeled training data. Most existing methods introduce auxiliary classifiers (experts) to model various unlabeled data distributions and produce pseudo-labels, but the expertises of various experts are not fully utilized. We observe that different experts are good at predicting different intervals of samples, e.g., long-tailed expert is skilled in samples located in the head interval and uniform expert excels in samples located in the medium interval. Therefore, we propose a dynamic expert assignment module that can estimate the class membership (i.e., head, medium, or tail class) of samples, and dynamically assigns suitable expert to each sample based on the estimated membership to produce high-quality pseudo-label in the training phase and produce prediction in the testing phase. We also theoretically reveal that integrating different experts' strengths will lead to a smaller generalization error bound. Moreover, we find that the deeper features are more biased toward the head class but with more discriminative ability, while the shallower features are less biased but also with less discriminative ability. We, therefore, propose a multi-depth feature fusion module to utilize different depth features to mitigate the model bias. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR-10-LT, STL-10-LT, and SVHN-LT datasets across various settings. The code is available at https://github.com/yaxinhou/Meta-Expert.
Abstract:Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks such as visual question answering (VQA) and image captioning. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with either hallucinations or actuality, realizing more precise and direct hallucination-related representations. Our analysis demonstrates that interventions along the faithful direction we identified can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a training-free method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead.




Abstract:Partial label learning (PLL) is a significant weakly supervised learning framework, where each training example corresponds to a set of candidate labels and only one label is the ground-truth label. For the first time, this paper investigates the partial label clustering problem, which takes advantage of the limited available partial labels to improve the clustering performance. Specifically, we first construct a weight matrix of examples based on their relationships in the feature space and disambiguate the candidate labels to estimate the ground-truth label based on the weight matrix. Then, we construct a set of must-link and cannot-link constraints based on the disambiguation results. Moreover, we propagate the initial must-link and cannot-link constraints based on an adversarial prior promoted dual-graph learning approach. Finally, we integrate weight matrix construction, label disambiguation, and pairwise constraints propagation into a joint model to achieve mutual enhancement. We also theoretically prove that a better disambiguated label matrix can help improve clustering performance. Comprehensive experiments demonstrate our method realizes superior performance when comparing with state-of-the-art constrained clustering methods, and outperforms PLL and semi-supervised PLL methods when only limited samples are annotated. The code is publicly available at https://github.com/xyt-ml/PLC.
Abstract:Despite the remarkable success of deep neural networks (DNNs), the security threat of adversarial attacks poses a significant challenge to the reliability of DNNs. By introducing randomness into different parts of DNNs, stochastic methods can enable the model to learn some uncertainty, thereby improving model robustness efficiently. In this paper, we theoretically discover a universal phenomenon that adversarial attacks will shift the distributions of feature statistics. Motivated by this theoretical finding, we propose a robustness enhancement module called Feature Statistics with Uncertainty (FSU). It resamples channel-wise feature means and standard deviations of examples from multivariate Gaussian distributions, which helps to reconstruct the attacked examples and calibrate the shifted distributions. The calibration recovers some domain characteristics of the data for classification, thereby mitigating the influence of perturbations and weakening the ability of attacks to deceive models. The proposed FSU module has universal applicability in training, attacking, predicting and fine-tuning, demonstrating impressive robustness enhancement ability at trivial additional time cost. For example, against powerful optimization-based CW attacks, by incorporating FSU into attacking and predicting phases, it endows many collapsed state-of-the-art models with 50%-80% robust accuracy on CIFAR10, CIFAR100 and SVHN.