Abstract:Ensemble clustering aggregates multiple weak clusterings to achieve a more accurate and robust consensus result. The Co-Association matrix (CA matrix) based method is the mainstream ensemble clustering approach that constructs the similarity relationships between sample pairs according the weak clustering partitions to generate the final clustering result. However, the existing methods neglect that the quality of cluster is related to its size, i.e., a cluster with smaller size tends to higher accuracy. Moreover, they also do not consider the valuable dissimilarity information in the base clusterings which can reflect the varying importance of sample pairs that are completely disconnected. To this end, we propose the Similarity and Dissimilarity Guided Co-association matrix (SDGCA) to achieve ensemble clustering. First, we introduce normalized ensemble entropy to estimate the quality of each cluster, and construct a similarity matrix based on this estimation. Then, we employ the random walk to explore high-order proximity of base clusterings to construct a dissimilarity matrix. Finally, the adversarial relationship between the similarity matrix and the dissimilarity matrix is utilized to construct a promoted CA matrix for ensemble clustering. We compared our method with 13 state-of-the-art methods across 12 datasets, and the results demonstrated the superiority clustering ability and robustness of the proposed approach. The code is available at https://github.com/xuz2019/SDGCA.
Abstract:Spectral variation is a common problem for hyperspectral image (HSI) representation. Low-rank tensor representation is an important approach to alleviate spectral variations. However, the spatial distribution of the HSI is always irregular, while the previous tensor low-rank representation methods can only be applied to the regular data cubes, which limits the performance. To remedy this issue, in this paper we propose a novel irregular tensor low-rank representation model. We first segment the HSI data into several irregular homogeneous regions. Then, we propose a novel irregular tensor low-rank representation method that can efficiently model the irregular 3D cubes. We further use a non-convex nuclear norm to pursue the low-rankness and introduce a negative global low-rank term that improves global consistency. This proposed model is finally formulated as a convex-concave optimization problem and solved by alternative augmented Lagrangian method. Through experiments on four public datasets, the proposed method outperforms the existing low-rank based HSI methods significantly. Code is available at: https://github.com/hb-studying/ITLRR.
Abstract:Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.
Abstract:In this paper, we introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning, which arise from dependencies on instances and labels. We start by modeling the inaccurate label distribution matrix as a combination of the true label distribution and a noise matrix influenced by specific instances and labels. To address this, we develop a linear mapping from instances to their true label distributions, incorporating label correlations, and decompose the noise matrix using feature and label representations, applying group sparsity constraints to accurately capture the noise. Furthermore, we employ graph regularization to align the topological structures of the input and output spaces, ensuring accurate reconstruction of the true label distribution matrix. Utilizing the Alternating Direction Method of Multipliers (ADMM) for efficient optimization, we validate our method's capability to recover true labels accurately and establish a generalization error bound. Extensive experiments demonstrate that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
Abstract:Semi-supervised symmetric non-negative matrix factorization (SNMF) utilizes the available supervisory information (usually in the form of pairwise constraints) to improve the clustering ability of SNMF. The previous methods introduce the pairwise constraints from the local perspective, i.e., they either directly refine the similarity matrix element-wisely or restrain the distance of the decomposed vectors in pairs according to the pairwise constraints, which overlook the global perspective, i.e., in the ideal case, the pairwise constraint matrix and the ideal similarity matrix possess the same low-rank structure. To this end, we first propose a novel semi-supervised SNMF model by seeking low-rank representation for the tensor synthesized by the pairwise constraint matrix and a similarity matrix obtained by the product of the embedding matrix and its transpose, which could strengthen those two matrices simultaneously from a global perspective. We then propose an enhanced SNMF model, making the embedding matrix tailored to the above tensor low-rank representation. We finally refine the similarity matrix by the strengthened pairwise constraints. We repeat the above steps to continuously boost the similarity matrix and pairwise constraint matrix, leading to a high-quality embedding matrix. Extensive experiments substantiate the superiority of our method. The code is available at https://github.com/JinaLeejnl/TSNMF.
Abstract:Hyperspectral images (HSI) clustering is an important but challenging task. The state-of-the-art (SOTA) methods usually rely on superpixels, however, they do not fully utilize the spatial and spectral information in HSI 3-D structure, and their optimization targets are not clustering-oriented. In this work, we first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI through pre-training, and then design a superpixel graph contrastive clustering (SPGCC) model to learn discriminative superpixel representations. Reasonable augmented views are crucial for contrastive clustering, and conventional contrastive learning may hurt the cluster structure since different samples are pushed away in the embedding space even if they belong to the same class. In SPGCC, we design two semantic-invariant data augmentations for HSI superpixels: pixel sampling augmentation and model weight augmentation. Then sample-level alignment and clustering-center-level contrast are performed for better intra-class similarity and inter-class dissimilarity of superpixel embeddings. We perform clustering and network optimization alternatively. Experimental results on several HSI datasets verify the advantages of the proposed method, e.g., on India Pines, our model improves the clustering accuracy from 58.79% to 67.59% compared to the SOTA method.
Abstract:Deep clustering has exhibited remarkable performance; however, the overconfidence problem, i.e., the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy, has been overlooked in prior research. To tackle this critical issue, we pioneer the development of a calibrated deep clustering framework. Specifically, we propose a novel dual-head deep clustering pipeline that can effectively calibrate the estimated confidence and the actual accuracy. The calibration head adjusts the overconfident predictions of the clustering head using regularization methods, generating prediction confidence and pseudo-labels that match the model learning status. This calibration process also guides the clustering head in dynamically selecting reliable high-confidence samples for training. Additionally, we introduce an effective network initialization strategy that enhances both training speed and network robustness. Extensive experiments demonstrate the proposed calibrated deep clustering framework not only surpasses state-of-the-art deep clustering methods by approximately 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
Abstract:This paper introduces RankMatch, an innovative approach for Semi-Supervised Label Distribution Learning (SSLDL). Addressing the challenge of limited labeled data, RankMatch effectively utilizes a small number of labeled examples in conjunction with a larger quantity of unlabeled data, reducing the need for extensive manual labeling in Deep Neural Network (DNN) applications. Specifically, RankMatch introduces an ensemble learning-inspired averaging strategy that creates a pseudo-label distribution from multiple weakly augmented images. This not only stabilizes predictions but also enhances the model's robustness. Beyond this, RankMatch integrates a pairwise relevance ranking (PRR) loss, capturing the complex inter-label correlations and ensuring that the predicted label distributions align with the ground truth. We establish a theoretical generalization bound for RankMatch, and through extensive experiments, demonstrate its superiority in performance against existing SSLDL methods.
Abstract:In partial label learning (PLL), each training sample is associated with a set of candidate labels, among which only one is valid. The core of PLL is to disambiguate the candidate labels to get the ground-truth one. In disambiguation, the existing works usually do not fully investigate the effectiveness of the non-candidate label set (a.k.a. complementary labels), which accurately indicates a set of labels that do not belong to a sample. In this paper, we use the non-candidate labels to induce a complementary classifier, which naturally forms an adversarial relationship against the traditional PLL classifier, to eliminate the false-positive labels in the candidate label set. Besides, we assume the feature space and the label space share the same local topological structure captured by a dynamic graph, and use it to assist disambiguation. Extensive experimental results validate the superiority of the proposed approach against state-of-the-art PLL methods on 4 controlled UCI data sets and 6 real-world data sets, and reveal the usefulness of complementary learning in PLL. The code has been released in the link https://github.com/Chongjie-Si/PL-CL.
Abstract:Label distribution (LD) uses the description degree to describe instances, which provides more fine-grained supervision information when learning with label ambiguity. Nevertheless, LD is unavailable in many real-world applications. To obtain LD, label enhancement (LE) has emerged to recover LD from logical label. Existing LE approach have the following problems: (\textbf{i}) They use logical label to train mappings to LD, but the supervision information is too loose, which can lead to inaccurate model prediction; (\textbf{ii}) They ignore feature redundancy and use the collected features directly. To solve (\textbf{i}), we use the topology of the feature space to generate more accurate label-confidence. To solve (\textbf{ii}), we proposed a novel supervised LE dimensionality reduction approach, which projects the original data into a lower dimensional feature space. Combining the above two, we obtain the augmented data for LE. Further, we proposed a novel nonlinear LE model based on the label-confidence and reduced features. Extensive experiments on 12 real-world datasets are conducted and the results show that our method consistently outperforms the other five comparing approaches.