Abstract:Visible-Infrared Person Re-Identification (VI-ReID) plays a crucial role in applications such as search and rescue, infrastructure protection, and nighttime surveillance. However, it faces significant challenges due to modality discrepancies, varying illumination, and frequent occlusions. To overcome these obstacles, we propose \textbf{AMINet}, an Adaptive Modality Interaction Network. AMINet employs multi-granularity feature extraction to capture comprehensive identity attributes from both full-body and upper-body images, improving robustness against occlusions and background clutter. The model integrates an interactive feature fusion strategy for deep intra-modal and cross-modal alignment, enhancing generalization and effectively bridging the RGB-IR modality gap. Furthermore, AMINet utilizes phase congruency for robust, illumination-invariant feature extraction and incorporates an adaptive multi-scale kernel MMD to align feature distributions across varying scales. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach, achieving a Rank-1 accuracy of $74.75\%$ on SYSU-MM01, surpassing the baseline by $7.93\%$ and outperforming the current state-of-the-art by $3.95\%$.
Abstract:Deep learning models in computer vision have achieved significant success but pose increasing concerns about energy consumption and sustainability. Despite these concerns, there is a lack of comprehensive understanding of their energy efficiency during inference. In this study, we conduct a comprehensive analysis of the inference energy consumption of 1,200 ImageNet classification models - the largest evaluation of its kind to date. Our findings reveal a steep diminishing return in accuracy gains relative to the increase in energy usage, highlighting sustainability concerns in the pursuit of marginal improvements. We identify key factors contributing to energy consumption and demonstrate methods to improve energy efficiency. To promote more sustainable AI practices, we introduce an energy efficiency scoring system and develop an interactive web application that allows users to compare models based on accuracy and energy consumption. By providing extensive empirical data and practical tools, we aim to facilitate informed decision-making and encourage collaborative efforts in developing energy-efficient AI technologies.
Abstract:Accurate modelling of spectra produced by X-ray sources requires the use of Monte-Carlo simulations. These simulations need to evaluate physical processes, such as those occurring in accretion processes around compact objects by sampling a number of different probability distributions. This is computationally time-consuming and could be sped up if replaced by neural networks. We demonstrate, on an example of the Maxwell-J\"uttner distribution that describes the speed of relativistic electrons, that the generative adversarial network (GAN) is capable of statistically replicating the distribution. The average value of the Kolmogorov-Smirnov test is 0.5 for samples generated by the neural network, showing that the generated distribution cannot be distinguished from the true distribution.