Abstract:Accurate modelling of spectra produced by X-ray sources requires the use of Monte-Carlo simulations. These simulations need to evaluate physical processes, such as those occurring in accretion processes around compact objects by sampling a number of different probability distributions. This is computationally time-consuming and could be sped up if replaced by neural networks. We demonstrate, on an example of the Maxwell-J\"uttner distribution that describes the speed of relativistic electrons, that the generative adversarial network (GAN) is capable of statistically replicating the distribution. The average value of the Kolmogorov-Smirnov test is 0.5 for samples generated by the neural network, showing that the generated distribution cannot be distinguished from the true distribution.
Abstract:Matching MRI brain images between patients or mapping patients' MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas.