Abstract:Quantifying the uncertainty of supervised learning models plays an important role in making more reliable predictions. Epistemic uncertainty, which usually is due to insufficient knowledge about the model, can be reduced by collecting more data or refining the learning models. Over the last few years, scholars have proposed many epistemic uncertainty handling techniques which can be roughly grouped into two categories, i.e., Bayesian and ensemble. This paper provides a comprehensive review of epistemic uncertainty learning techniques in supervised learning over the last five years. As such, we, first, decompose the epistemic uncertainty into bias and variance terms. Then, a hierarchical categorization of epistemic uncertainty learning techniques along with their representative models is introduced. In addition, several applications such as computer vision (CV) and natural language processing (NLP) are presented, followed by a discussion on research gaps and possible future research directions.
Abstract:Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leverages semantic information of both seen (source) and unseen (target) classes to bridge the gap between both seen and unseen classes. Since its introduction, many GZSL models have been formulated. In this review paper, we present a comprehensive review of GZSL. Firstly, we provide an overview of GZSL including the problems and challenging issues. Then, we introduce a hierarchical categorization of the GZSL methods and discuss the representative methods of each category. In addition, we discuss several research directions for future studies.