Abstract:In this paper, we introduce DistDD, a novel approach within the federated learning framework that reduces the need for repetitive communication by distilling data directly on clients' devices. Unlike traditional federated learning that requires iterative model updates across nodes, DistDD facilitates a one-time distillation process that extracts a global distilled dataset, maintaining the privacy standards of federated learning while significantly cutting down communication costs. By leveraging the DistDD's distilled dataset, the developers of the FL can achieve just-in-time parameter tuning and neural architecture search over FL without repeating the whole FL process multiple times. We provide a detailed convergence proof of the DistDD algorithm, reinforcing its mathematical stability and reliability for practical applications. Our experiments demonstrate the effectiveness and robustness of DistDD, particularly in non-i.i.d. and mislabeled data scenarios, showcasing its potential to handle complex real-world data challenges distinctively from conventional federated learning methods. We also evaluate DistDD's application in the use case and prove its effectiveness and communication-savings in the NAS use case.
Abstract:Two-party split learning has emerged as a popular paradigm for vertical federated learning. To preserve the privacy of the label owner, split learning utilizes a split model, which only requires the exchange of intermediate representations (IRs) based on the inputs and gradients for each IR between two parties during the learning process. However, split learning has recently been proven to survive label inference attacks. Though several defense methods could be adopted, they either have limited defensive performance or significantly negatively impact the original mission. In this paper, we propose a novel two-party split learning method to defend against existing label inference attacks while maintaining the high utility of the learned models. Specifically, we first craft a dimension transformation module, SecDT, which could achieve bidirectional mapping between original labels and increased K-class labels to mitigate label leakage from the directional perspective. Then, a gradient normalization algorithm is designed to remove the magnitude divergence of gradients from different classes. We propose a softmax-normalized Gaussian noise to mitigate privacy leakage and make our K unknowable to adversaries. We conducted experiments on real-world datasets, including two binary-classification datasets (Avazu and Criteo) and three multi-classification datasets (MNIST, FashionMNIST, CIFAR-10); we also considered current attack schemes, including direction, norm, spectral, and model completion attacks. The detailed experiments demonstrate our proposed method's effectiveness and superiority over existing approaches. For instance, on the Avazu dataset, the attack AUC of evaluated four prominent attacks could be reduced by 0.4532+-0.0127.
Abstract:In this study, we introduce RePD, an innovative attack Retrieval-based Prompt Decomposition framework designed to mitigate the risk of jailbreak attacks on large language models (LLMs). Despite rigorous pretraining and finetuning focused on ethical alignment, LLMs are still susceptible to jailbreak exploits. RePD operates on a one-shot learning model, wherein it accesses a database of pre-collected jailbreak prompt templates to identify and decompose harmful inquiries embedded within user prompts. This process involves integrating the decomposition of the jailbreak prompt into the user's original query into a one-shot learning example to effectively teach the LLM to discern and separate malicious components. Consequently, the LLM is equipped to first neutralize any potentially harmful elements before addressing the user's prompt in a manner that aligns with its ethical guidelines. RePD is versatile and compatible with a variety of open-source LLMs acting as agents. Through comprehensive experimentation with both harmful and benign prompts, we have demonstrated the efficacy of our proposed RePD in enhancing the resilience of LLMs against jailbreak attacks, without compromising their performance in responding to typical user requests.
Abstract:Federated learning (FL) is a newly emerging distributed learning paradigm that allows numerous participating clients to train machine learning models collaboratively, each with its data distribution and without sharing their data. One fundamental bottleneck in FL is the heavy communication overheads of high-dimensional models between the distributed clients and the central server. Previous works often condense models into compact formats by gradient compression or distillation to overcome communication limitations. In contrast, we propose FedCliP in this work, the first communication efficient FL training framework from a macro perspective, which can position valid clients participating in FL quickly and constantly prune redundant clients. Specifically, We first calculate the reliability score based on the training loss and model divergence as an indicator to measure the client pruning. We propose a valid client determination approximation framework based on the reliability score with Gaussian Scale Mixture (GSM) modeling for federated participating clients pruning. Besides, we develop a communication efficient client pruning training method in the FL scenario. Experimental results on MNIST dataset show that FedCliP has up to 10%~70% communication costs for converged models at only a 0.2% loss in accuracy.