Abstract:Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading.
Abstract:Understanding the creation, evolution, and dissemination of scientific knowledge is crucial for bridging diverse subject areas and addressing complex global challenges such as pandemics, climate change, and ethical AI. Scientometrics, the quantitative and qualitative study of scientific literature, provides valuable insights into these processes. We introduce Scito2M, a longitudinal scientometric dataset with over two million academic publications, providing comprehensive contents information and citation graphs to support cross-disciplinary analyses. Using Scito2M, we conduct a temporal study spanning over 30 years to explore key questions in scientometrics: the evolution of academic terminology, citation patterns, and interdisciplinary knowledge exchange. Our findings reveal critical insights, such as disparities in epistemic cultures, knowledge production modes, and citation practices. For example, rapidly developing, application-driven fields like LLMs exhibit significantly shorter citation age (2.48 years) compared to traditional theoretical disciplines like oral history (9.71 years).
Abstract:Understanding biological processes, drug development, and biotechnological advancements requires detailed analysis of protein structures and sequences, a task in protein research that is inherently complex and time-consuming when performed manually. To streamline this process, we introduce ProteinGPT, a state-of-the-art multi-modal protein chat system, that allows users to upload protein sequences and/or structures for comprehensive protein analysis and responsive inquiries. ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation, coupled with a large language model (LLM) to generate accurate and contextually relevant responses. To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o. This innovative system ensures accurate alignment between the user-uploaded data and prompts, simplifying protein analysis. Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
Abstract:We propose LogicVista, an evaluation benchmark that assesses the integrated logical reasoning capabilities of multimodal large language models (MLLMs) in Visual contexts. Recent advancements in MLLMs have demonstrated various fascinating abilities, from crafting poetry based on an image to performing mathematical reasoning. However, there is still a lack of systematic evaluation of MLLMs' proficiency in logical reasoning tasks, which are essential for activities like navigation and puzzle-solving. Thus we evaluate general logical cognition abilities across 5 logical reasoning tasks encompassing 9 different capabilities, using a sample of 448 multiple-choice questions. Each question is annotated with the correct answer and the human-written reasoning behind the selection, enabling both open-ended and multiple-choice evaluation. A total of 8 MLLMs are comprehensively evaluated using LogicVista. Code and Data Available at https://github.com/Yijia-Xiao/LogicVista.
Abstract:The applications of large language models (LLMs) are promising for biomedical and healthcare research. Despite the availability of open-source LLMs trained using a wide range of biomedical data, current research on the applications of LLMs to genomics and proteomics is still limited. To fill this gap, we propose a collection of finetuned LLMs and multimodal LLMs (MLLMs), known as Geneverse, for three novel tasks in genomic and proteomic research. The models in Geneverse are trained and evaluated based on domain-specific datasets, and we use advanced parameter-efficient finetuning techniques to achieve the model adaptation for tasks including the generation of descriptions for gene functions, protein function inference from its structure, and marker gene selection from spatial transcriptomic data. We demonstrate that adapted LLMs and MLLMs perform well for these tasks and may outperform closed-source large-scale models based on our evaluations focusing on both truthfulness and structural correctness. All of the training strategies and base models we used are freely accessible.
Abstract:Peer review is fundamental to the integrity and advancement of scientific publication. Traditional methods of peer review analyses often rely on exploration and statistics of existing peer review data, which do not adequately address the multivariate nature of the process, account for the latent variables, and are further constrained by privacy concerns due to the sensitive nature of the data. We introduce AgentReview, the first large language model (LLM) based peer review simulation framework, which effectively disentangles the impacts of multiple latent factors and addresses the privacy issue. Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers' biases, supported by sociological theories such as the social influence theory, altruism fatigue, and authority bias. We believe that this study could offer valuable insights to improve the design of peer review mechanisms.
Abstract:Large Language Models (LLMs) have achieved unparalleled success across diverse language modeling tasks in recent years. However, this progress has also intensified ethical concerns, impacting the deployment of LLMs in everyday contexts. This paper provides a comprehensive survey of ethical challenges associated with LLMs, from longstanding issues such as copyright infringement, systematic bias, and data privacy, to emerging problems like truthfulness and social norms. We critically analyze existing research aimed at understanding, examining, and mitigating these ethical risks. Our survey underscores integrating ethical standards and societal values into the development of LLMs, thereby guiding the development of responsible and ethically aligned language models.
Abstract:Developing and discovering new drugs is a complex and resource-intensive endeavor that often involves substantial costs, time investment, and safety concerns. A key aspect of drug discovery involves identifying novel drug-target (DT) interactions. Existing computational methods for predicting DT interactions have primarily focused on binary classification tasks, aiming to determine whether a DT pair interacts or not. However, protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity, presenting a persistent challenge for accurate prediction. In this study, we investigate various techniques employed in Drug Target Interaction (DTI) prediction and propose novel enhancements to enhance their performance. Our approaches include the integration of Protein Language Models (PLMs) and the incorporation of Contact Map information as an inductive bias within current models. Through extensive experimentation, we demonstrate that our proposed approaches outperform the baseline models considered in this study, presenting a compelling case for further development in this direction. We anticipate that the insights gained from this work will significantly narrow the search space for potential drugs targeting specific proteins, thereby accelerating drug discovery. Code and data for PGraphDTA are available at https://anonymous.4open.science/r/PGraphDTA.
Abstract:Knowledge graphs (KGs) have emerged as a powerful framework for representing and integrating complex biomedical information. However, assembling KGs from diverse sources remains a significant challenge in several aspects, including entity alignment, scalability, and the need for continuous updates to keep pace with scientific advancements. Moreover, the representative power of KGs is often limited by the scarcity of multi-modal data integration. To overcome these challenges, we propose Know2BIO, a general-purpose heterogeneous KG benchmark for the biomedical domain. Know2BIO integrates data from 30 diverse sources, capturing intricate relationships across 11 biomedical categories. It currently consists of ~219,000 nodes and ~6,200,000 edges. Know2BIO is capable of user-directed automated updating to reflect the latest knowledge in biomedical science. Furthermore, Know2BIO is accompanied by multi-modal data: node features including text descriptions, protein and compound sequences and structures, enabling the utilization of emerging natural language processing methods and multi-modal data integration strategies. We evaluate KG representation models on Know2BIO, demonstrating its effectiveness as a benchmark for KG representation learning in the biomedical field. Data and source code of Know2BIO are available at https://github.com/Yijia-Xiao/Know2BIO/.
Abstract:The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of leakage. To address this challenge, we introduce Privacy Protection Language Models (PPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model's knowledge. Our work underscores the potential for Large Language Models as robust privacy protection learners.