Abstract:Schema matching constitutes a pivotal phase in the data ingestion process for contemporary database systems. Its objective is to discern pairwise similarities between two sets of attributes, each associated with a distinct data table. This challenge emerges at the initial stages of data analytics, such as when incorporating a third-party table into existing databases to inform business insights. Given its significance in the realm of database systems, schema matching has been under investigation since the 2000s. This study revisits this foundational problem within the context of large language models. Adhering to increasingly stringent data security policies, our focus lies on the zero-shot and few-shot scenarios: the model should analyze only a minimal amount of customer data to execute the matching task, contrasting with the conventional approach of scrutinizing the entire data table. We emphasize that the zero-shot or few-shot assumption is imperative to safeguard the identity and privacy of customer data, even at the potential cost of accuracy. The capability to accurately match attributes under such stringent requirements distinguishes our work from previous literature in this domain.
Abstract:Locality-sensitive hashing (LSH) is a fundamental algorithmic technique widely employed in large-scale data processing applications, such as nearest-neighbor search, entity resolution, and clustering. However, its applicability in some real-world scenarios is limited due to the need for careful design of hashing functions that align with specific metrics. Existing LSH-based Entity Blocking solutions primarily rely on generic similarity metrics such as Jaccard similarity, whereas practical use cases often demand complex and customized similarity rules surpassing the capabilities of generic similarity metrics. Consequently, designing LSH functions for these customized similarity rules presents considerable challenges. In this research, we propose a neuralization approach to enhance locality-sensitive hashing by training deep neural networks to serve as hashing functions for complex metrics. We assess the effectiveness of this approach within the context of the entity resolution problem, which frequently involves the use of task-specific metrics in real-world applications. Specifically, we introduce NLSHBlock (Neural-LSH Block), a novel blocking methodology that leverages pre-trained language models, fine-tuned with a novel LSH-based loss function. Through extensive evaluations conducted on a diverse range of real-world datasets, we demonstrate the superiority of NLSHBlock over existing methods, exhibiting significant performance improvements. Furthermore, we showcase the efficacy of NLSHBlock in enhancing the performance of the entity matching phase, particularly within the semi-supervised setting.