Abstract:We present Florence-VL, a new family of multimodal large language models (MLLMs) with enriched visual representations produced by Florence-2, a generative vision foundation model. Unlike the widely used CLIP-style vision transformer trained by contrastive learning, Florence-2 can capture different levels and aspects of visual features, which are more versatile to be adapted to diverse downstream tasks. We propose a novel feature-fusion architecture and an innovative training recipe that effectively integrates Florence-2's visual features into pretrained LLMs, such as Phi 3.5 and LLama 3. In particular, we propose "depth-breath fusion (DBFusion)" to fuse the visual features extracted from different depths and under multiple prompts. Our model training is composed of end-to-end pretraining of the whole model followed by finetuning of the projection layer and the LLM, on a carefully designed recipe of diverse open-source datasets that include high-quality image captions and instruction-tuning pairs. Our quantitative analysis and visualization of Florence-VL's visual features show its advantages over popular vision encoders on vision-language alignment, where the enriched depth and breath play important roles. Florence-VL achieves significant improvements over existing state-of-the-art MLLMs across various multi-modal and vision-centric benchmarks covering general VQA, perception, hallucination, OCR, Chart, knowledge-intensive understanding, etc. To facilitate future research, our models and the complete training recipe are open-sourced. https://github.com/JiuhaiChen/Florence-VL
Abstract:Text-to-video (T2V) models like Sora have made significant strides in visualizing complex prompts, which is increasingly viewed as a promising path towards constructing the universal world simulator. Cognitive psychologists believe that the foundation for achieving this goal is the ability to understand intuitive physics. However, the capacity of these models to accurately represent intuitive physics remains largely unexplored. To bridge this gap, we introduce PhyGenBench, a comprehensive \textbf{Phy}sics \textbf{Gen}eration \textbf{Ben}chmark designed to evaluate physical commonsense correctness in T2V generation. PhyGenBench comprises 160 carefully crafted prompts across 27 distinct physical laws, spanning four fundamental domains, which could comprehensively assesses models' understanding of physical commonsense. Alongside PhyGenBench, we propose a novel evaluation framework called PhyGenEval. This framework employs a hierarchical evaluation structure utilizing appropriate advanced vision-language models and large language models to assess physical commonsense. Through PhyGenBench and PhyGenEval, we can conduct large-scale automated assessments of T2V models' understanding of physical commonsense, which align closely with human feedback. Our evaluation results and in-depth analysis demonstrate that current models struggle to generate videos that comply with physical commonsense. Moreover, simply scaling up models or employing prompt engineering techniques is insufficient to fully address the challenges presented by PhyGenBench (e.g., dynamic scenarios). We hope this study will inspire the community to prioritize the learning of physical commonsense in these models beyond entertainment applications. We will release the data and codes at https://github.com/OpenGVLab/PhyGenBench
Abstract:Deep learning for time series forecasting has seen significant advancements over the past decades. However, despite the success of large-scale pre-training in language and vision domains, pre-trained time series models remain limited in scale and operate at a high cost, hindering the development of larger capable forecasting models in real-world applications. In response, we introduce Time-MoE, a scalable and unified architecture designed to pre-train larger, more capable forecasting foundation models while reducing inference costs. By leveraging a sparse mixture-of-experts (MoE) design, Time-MoE enhances computational efficiency by activating only a subset of networks for each prediction, reducing computational load while maintaining high model capacity. This allows Time-MoE to scale effectively without a corresponding increase in inference costs. Time-MoE comprises a family of decoder-only transformer models that operate in an auto-regressive manner and support flexible forecasting horizons with varying input context lengths. We pre-trained these models on our newly introduced large-scale data Time-300B, which spans over 9 domains and encompassing over 300 billion time points. For the first time, we scaled a time series foundation model up to 2.4 billion parameters, achieving significantly improved forecasting precision. Our results validate the applicability of scaling laws for training tokens and model size in the context of time series forecasting. Compared to dense models with the same number of activated parameters or equivalent computation budgets, our models consistently outperform them by large margin. These advancements position Time-MoE as a state-of-the-art solution for tackling real-world time series forecasting challenges with superior capability, efficiency, and flexibility.
Abstract:Large language models (LLMs) still lack delicate controllability over their responses, which is critical to enhancing their performance and the user experience. However, curating supervised fine-tuning (SFT) datasets to improve LLM controllability usually relies on human experts or proprietary LLMs, which requires additional costs. To bridge this gap, we propose Rule-based Data Recycling (RuleR), a data augmentation method incorporating multiple constraints into the original data samples according to predefined rules, which creates new training tasks to consolidate the controllability of LLMs. Instead of creating new data from scratch, RuleR ``recycles'' existing data by simply applying rule-based edits to their responses and appending the rule-instructions in their original instructions. Experimental results demonstrate RuleR's effectiveness in improving LLM controllability while maintaining general instruction-following capabilities. The code will be released on https://github.com/MingLiiii/RuleR.
Abstract:Large vision-language models (LVLMs) hallucinate: certain context cues in an image may trigger the language module's overconfident and incorrect reasoning on abnormal or hypothetical objects. Though a few benchmarks have been developed to investigate LVLM hallucinations, they mainly rely on hand-crafted corner cases whose fail patterns may hardly generalize, and finetuning on them could undermine their validity. These motivate us to develop the first automatic benchmark generation approach, AUTOHALLUSION, that harnesses a few principal strategies to create diverse hallucination examples. It probes the language modules in LVLMs for context cues and uses them to synthesize images by: (1) adding objects abnormal to the context cues; (2) for two co-occurring objects, keeping one and excluding the other; or (3) removing objects closely tied to the context cues. It then generates image-based questions whose ground-truth answers contradict the language module's prior. A model has to overcome contextual biases and distractions to reach correct answers, while incorrect or inconsistent answers indicate hallucinations. AUTOHALLUSION enables us to create new benchmarks at the minimum cost and thus overcomes the fragility of hand-crafted benchmarks. It also reveals common failure patterns and reasons, providing key insights to detect, avoid, or control hallucinations. Comprehensive evaluations of top-tier LVLMs, e.g., GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5, show a 97.7% and 98.7% success rate of hallucination induction on synthetic and real-world datasets of AUTOHALLUSION, paving the way for a long battle against hallucinations.
Abstract:We present Twin Answer Sentences Attack (TASA), an adversarial attack method for question answering (QA) models that produces fluent and grammatical adversarial contexts while maintaining gold answers. Despite phenomenal progress on general adversarial attacks, few works have investigated the vulnerability and attack specifically for QA models. In this work, we first explore the biases in the existing models and discover that they mainly rely on keyword matching between the question and context, and ignore the relevant contextual relations for answer prediction. Based on two biases above, TASA attacks the target model in two folds: (1) lowering the model's confidence on the gold answer with a perturbed answer sentence; (2) misguiding the model towards a wrong answer with a distracting answer sentence. Equipped with designed beam search and filtering methods, TASA can generate more effective attacks than existing textual attack methods while sustaining the quality of contexts, in extensive experiments on five QA datasets and human evaluations.
Abstract:Generating high-quality textual adversarial examples is critical for investigating the pitfalls of natural language processing (NLP) models and further promoting their robustness. Existing attacks are usually realized through word-level or sentence-level perturbations, which either limit the perturbation space or sacrifice fluency and textual quality, both affecting the attack effectiveness. In this paper, we propose Phrase-Level Textual Adversarial aTtack (PLAT) that generates adversarial samples through phrase-level perturbations. PLAT first extracts the vulnerable phrases as attack targets by a syntactic parser, and then perturbs them by a pre-trained blank-infilling model. Such flexible perturbation design substantially expands the search space for more effective attacks without introducing too many modifications, and meanwhile maintaining the textual fluency and grammaticality via contextualized generation using surrounding texts. Moreover, we develop a label-preservation filter leveraging the likelihoods of language models fine-tuned on each class, rather than textual similarity, to rule out those perturbations that potentially alter the original class label for humans. Extensive experiments and human evaluation demonstrate that PLAT has a superior attack effectiveness as well as a better label consistency than strong baselines.
Abstract:Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that are agnostic to the context, often resulting in unnatural and ungrammatical outputs. This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs through a mask-then-infill procedure. CLARE builds on a pre-trained masked language model and modifies the inputs in a context-aware manner. We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs of varied lengths. With a richer range of available strategies, CLARE is able to attack a victim model more efficiently with fewer edits. Extensive experiments and human evaluation demonstrate that CLARE outperforms the baselines in terms of attack success rate, textual similarity, fluency and grammaticality.
Abstract:Multi-head attentive neural architectures have achieved state-of-the-art results on a variety of natural language processing tasks. Evidence has shown that they are overparameterized; attention heads can be pruned without significant performance loss. In this work, we instead "reallocate" them -- the model learns to activate different heads on different inputs. Drawing connections between multi-head attention and mixture of experts, we propose the mixture of attentive experts model (MAE). MAE is trained using a block coordinate descent algorithm that alternates between updating (1) the responsibilities of the experts and (2) their parameters. Experiments on machine translation and language modeling show that MAE outperforms strong baselines on both tasks. Particularly, on the WMT14 English to German translation dataset, MAE improves over "transformer-base" by 0.8 BLEU, with a comparable number of parameters. Our analysis shows that our model learns to specialize different experts to different inputs.
Abstract:We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: ($i$) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; ($ii$) how to train a robust model with limited labeled data accompanied with context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.