Abstract:The remarkable success of modern machine learning models on large datasets often demands extensive training time and resource consumption. To save cost, a prevalent research line, known as online batch selection, explores selecting informative subsets during the training process. Although recent efforts achieve advancements by measuring the impact of each sample on generalization, their reliance on additional reference models inherently limits their practical applications, when there are no such ideal models available. On the other hand, the vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner, which sacrifices the diversity and induces the redundancy. To tackle this dilemma, we propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples. Specifically, we define a novel selection objective that measures the group-wise orthogonalized representativeness to combat the redundancy issue of previous sample-wise criteria, and provide a principled selection-efficient realization. Extensive experiments across various tasks demonstrate the significant superiority of DivBS in the performance-speedup trade-off. The code is publicly available.
Abstract:The Chinese numerical string corpus, serves as a valuable resource for speaker verification, particularly in financial transactions. Researches indicate that in short speech scenarios, text-dependent speaker verification (TD-SV) consistently outperforms text-independent speaker verification (TI-SV). However, TD-SV potentially includes the validation of text information, that can be negatively impacted by reading rhythms and pauses. To address this problem, we propose an end-to-end speaker verification system that enhances TD-SV by decoupling speaker and text information. Our system consists of a text embedding extractor, a speaker embedding extractor and a fusion module. In the text embedding extractor, we employ an enhanced Transformer and introduce a triple loss including text classification loss, connectionist temporal classification (CTC) loss and decoder loss; while in the speaker embedding extractor, we create a multi-scale pooling method by combining sliding window attentive statistics pooling (SWASP) with attentive statistics pooling (ASP). To mitigate the scarcity of data, we have recorded a publicly available Chinese numerical corpus named SHALCAS22A (hereinafter called SHAL), which can be accessed on Open-SLR. Moreover, we employ data augmentation techniques using Tacotron2 and HiFi-GAN. Our method achieves an equal error rate (EER) performance improvement of 49.2% on Hi-Mia and 75.0% on SHAL, respectively.
Abstract:Vision-Language Pre-training (VLP) that utilizes the multi-modal information to promote the training efficiency and effectiveness, has achieved great success in vision recognition of natural domains and shown promise in medical imaging diagnosis for the Chest X-Rays (CXRs). However, current works mainly pay attention to the exploration on single dataset of CXRs, which locks the potential of this powerful paradigm on larger hybrid of multi-source CXRs datasets. We identify that although blending samples from the diverse sources offers the advantages to improve the model generalization, it is still challenging to maintain the consistent superiority for the task of each source due to the existing heterogeneity among sources. To handle this dilemma, we design a Conquer-and-Divide pre-training framework, termed as UniChest, aiming to make full use of the collaboration benefit of multiple sources of CXRs while reducing the negative influence of the source heterogeneity. Specially, the ``Conquer" stage in UniChest encourages the model to sufficiently capture multi-source common patterns, and the ``Divide" stage helps squeeze personalized patterns into different small experts (query networks). We conduct thorough experiments on many benchmarks, e.g., ChestX-ray14, CheXpert, Vindr-CXR, Shenzhen, Open-I and SIIM-ACR Pneumothorax, verifying the effectiveness of UniChest over a range of baselines, and release our codes and pre-training models at https://github.com/Elfenreigen/UniChest.
Abstract:Researches indicate that text-dependent speaker verification (TD-SV) often outperforms text-independent verification (TI-SV) in short speech scenarios. However, collecting large-scale fixed text speech data is challenging, and as speech length increases, factors like sentence rhythm and pauses affect TDSV's sensitivity to text sequence. Based on these factors, We propose the hypothesis that strategies such as more fine-grained pooling methods on time scales and decoupled representations of speech speaker embedding and text embedding are more suitable for TD-SV. We have introduced an end-to-end TD-SV system based on a dataset comprising longer Chinese numerical string texts. It contains a text embedding network, a speaker embedding network, and back-end fusion. First, we recorded a dataset consisting of long Chinese numerical text named SHAL, which is publicly available on the Open-SLR website. We addressed the issue of dataset scarcity by augmenting it using Tacotron2 and HiFi-GAN. Next, we introduced a dual representation of speech with text embedding and speaker embedding. In the text embedding network, we employed an enhanced Transformer and introduced a triple loss that includes text classification loss, CTC loss, and decoder loss. For the speaker embedding network, we enhanced a sliding window attentive statistics pooling (SWASP), combined with attentive statistics pooling (ASP) to create a multi-scale pooling method. Finally, we fused text embedding and speaker embedding. Our pooling methods achieved an equal error rate (EER) performance improvement of 49.2% on Hi-Mia and 75.0% on SHAL, respectively.
Abstract:Self-supervised learning (SSL) as an effective paradigm of representation learning has achieved tremendous success on various curated datasets in diverse scenarios. Nevertheless, when facing the long-tailed distribution in real-world applications, it is still hard for existing methods to capture transferable and robust representation. Conventional SSL methods, pursuing sample-level uniformity, easily leads to representation learning disparity where head classes dominate the feature regime but tail classes passively collapse. To address this problem, we propose a novel Geometric Harmonization (GH) method to encourage category-level uniformity in representation learning, which is more benign to the minority and almost does not hurt the majority under long-tailed distribution. Specially, GH measures the population statistics of the embedding space on top of self-supervised learning, and then infer an fine-grained instance-wise calibration to constrain the space expansion of head classes and avoid the passive collapse of tail classes. Our proposal does not alter the setting of SSL and can be easily integrated into existing methods in a low-cost manner. Extensive results on a range of benchmark datasets show the effectiveness of GH with high tolerance to the distribution skewness. Our code is available at https://github.com/MediaBrain-SJTU/Geometric-Harmonization.
Abstract:Many real-world image recognition problems, such as diagnostic medical imaging exams, are "long-tailed" $\unicode{x2013}$ there are a few common findings followed by many more relatively rare conditions. In chest radiography, diagnosis is both a long-tailed and multi-label problem, as patients often present with multiple findings simultaneously. While researchers have begun to study the problem of long-tailed learning in medical image recognition, few have studied the interaction of label imbalance and label co-occurrence posed by long-tailed, multi-label disease classification. To engage with the research community on this emerging topic, we conducted an open challenge, CXR-LT, on long-tailed, multi-label thorax disease classification from chest X-rays (CXRs). We publicly release a large-scale benchmark dataset of over 350,000 CXRs, each labeled with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes of top-performing solutions, providing practical recommendations for long-tailed, multi-label medical image classification. Finally, we use these insights to propose a path forward involving vision-language foundation models for few- and zero-shot disease classification.
Abstract:Clinical classification of chest radiography is particularly challenging for standard machine learning algorithms due to its inherent long-tailed and multi-label nature. However, few attempts take into account the coupled challenges posed by both the class imbalance and label co-occurrence, which hinders their value to boost the diagnosis on chest X-rays (CXRs) in the real-world scenarios. Besides, with the prevalence of pretraining techniques, how to incorporate these new paradigms into the current framework lacks of the systematical study. This technical report presents a brief description of our solution in the ICCV CVAMD 2023 CXR-LT Competition. We empirically explored the effectiveness for CXR diagnosis with the integration of several advanced designs about data augmentation, feature extractor, classifier design, loss function reweighting, exogenous data replenishment, etc. In addition, we improve the performance through simple test-time data augmentation and ensemble. Our framework finally achieves 0.349 mAP on the competition test set, ranking in the top five.
Abstract:Class incremental learning (CIL) aims to incrementally update a trained model with the new classes of samples (plasticity) while retaining previously learned ability (stability). To address the most challenging issue in this goal, i.e., catastrophic forgetting, the mainstream paradigm is memory-replay CIL, which consolidates old knowledge by replaying a small number of old classes of samples saved in the memory. Despite effectiveness, the inherent destruction-reconstruction dynamics in memory-replay CIL are an intrinsic limitation: if the old knowledge is severely destructed, it will be quite hard to reconstruct the lossless counterpart. Our theoretical analysis shows that the destruction of old knowledge can be effectively alleviated by balancing the contribution of samples from the current phase and those saved in the memory. Motivated by this theoretical finding, we propose a novel Balanced Destruction-Reconstruction module (BDR) for memory-replay CIL, which can achieve better knowledge reconstruction by reducing the degree of maximal destruction of old knowledge. Specifically, to achieve a better balance between old knowledge and new classes, the proposed BDR module takes into account two factors: the variance in training status across different classes and the quantity imbalance of samples from the current phase and memory. By dynamically manipulating the gradient during training based on these factors, BDR can effectively alleviate knowledge destruction and improve knowledge reconstruction. Extensive experiments on a range of CIL benchmarks have shown that as a lightweight plug-and-play module, BDR can significantly improve the performance of existing state-of-the-art methods with good generalization.
Abstract:Recent studies have shown that pseudo labels can contribute to unsupervised domain adaptation (UDA) for speaker verification. Inspired by the self-training strategies that use an existing classifier to label the unlabeled data for retraining, we propose a cluster-guided UDA framework that labels the target domain data by clustering and combines the labeled source domain data and pseudo-labeled target domain data to train a speaker embedding network. To improve the cluster quality, we train a speaker embedding network dedicated for clustering by minimizing the contrastive center loss. The goal is to reduce the distance between an embedding and its assigned cluster center while enlarging the distance between the embedding and the other cluster centers. Using VoxCeleb2 as the source domain and CN-Celeb1 as the target domain, we demonstrate that the proposed method can achieve an equal error rate (EER) of 8.10% on the CN-Celeb1 evaluation set without using any labels from the target domain. This result outperforms the supervised baseline by 39.6% and is the state-of-the-art UDA performance on this corpus.
Abstract:Real-world data usually couples the label ambiguity and heavy imbalance, challenging the algorithmic robustness of partial label learning (PLL) and long-tailed learning (LT). The straightforward combination of LT and PLL, i.e., LT-PLL, suffers from a fundamental dilemma: LT methods build upon a given class distribution that is unavailable in PLL, and the performance of PLL is severely influenced in long-tailed context. We show that even with the auxiliary of an oracle class prior, the state-of-the-art methods underperform due to an adverse fact that the constant rebalancing in LT is harsh to the label disambiguation in PLL. To overcome this challenge, we thus propose a dynamic rebalancing method, termed as RECORDS, without assuming any prior knowledge about the class distribution. Based on a parametric decomposition of the biased output, our method constructs a dynamic adjustment that is benign to the label disambiguation process and theoretically converges to the oracle class prior. Extensive experiments on three benchmark datasets demonstrate the significant gain of RECORDS compared with a range of baselines. The code is publicly available.