Abstract:The end-to-end autonomous driving paradigm has recently attracted lots of attention due to its scalability. However, existing methods are constrained by the limited scale of real-world data, which hinders a comprehensive exploration of the scaling laws associated with end-to-end autonomous driving. To address this issue, we collected substantial data from various driving scenarios and behaviors and conducted an extensive study on the scaling laws of existing imitation learning-based end-to-end autonomous driving paradigms. Specifically, approximately 4 million demonstrations from 23 different scenario types were gathered, amounting to over 30,000 hours of driving demonstrations. We performed open-loop evaluations and closed-loop simulation evaluations in 1,400 diverse driving demonstrations (1,300 for open-loop and 100 for closed-loop) under stringent assessment conditions. Through experimental analysis, we discovered that (1) the performance of the driving model exhibits a power-law relationship with the amount of training data; (2) a small increase in the quantity of long-tailed data can significantly improve the performance for the corresponding scenarios; (3) appropriate scaling of data enables the model to achieve combinatorial generalization in novel scenes and actions. Our results highlight the critical role of data scaling in improving the generalizability of models across diverse autonomous driving scenarios, assuring safe deployment in the real world. Project repository: https://github.com/ucaszyp/Driving-Scaling-Law
Abstract:Offline reinforcement learning learns an effective policy on offline datasets without online interaction, and it attracts persistent research attention due to its potential of practical application. However, extrapolation error generated by distribution shift will still lead to the overestimation for those actions that transit to out-of-distribution(OOD) states, which degrades the reliability and robustness of the offline policy. In this paper, we propose Contextual Conservative Q-Learning(C-CQL) to learn a robustly reliable policy through the contextual information captured via an inverse dynamics model. With the supervision of the inverse dynamics model, it tends to learn a policy that generates stable transition at perturbed states, for the fact that pertuebed states are a common kind of OOD states. In this manner, we enable the learnt policy more likely to generate transition that destines to the empirical next state distributions of the offline dataset, i.e., robustly reliable transition. Besides, we theoretically reveal that C-CQL is the generalization of the Conservative Q-Learning(CQL) and aggressive State Deviation Correction(SDC). Finally, experimental results demonstrate the proposed C-CQL achieves the state-of-the-art performance in most environments of offline Mujoco suite and a noisy Mujoco setting.
Abstract:Recent deep learning-based methods have achieved promising performance for computed tomography metal artifact reduction (CTMAR). However, most of them suffer from two limitations: (i) the domain knowledge is not fully embedded into the network training; (ii) metal artifacts lack effective representation models. The aforementioned limitations leave room for further performance improvement. Against these issues, we propose a novel triple domain model-driven CTMAR network, termed as TriDoNet, whose network training exploits triple domain knowledge, i.e., the knowledge of the sinogram, CT image, and metal artifact domains. Specifically, to explore the non-local repetitive streaking patterns of metal artifacts, we encode them as an explicit tight frame sparse representation model with adaptive thresholds. Furthermore, we design a contrastive regularization (CR) built upon contrastive learning to exploit clean CT images and metal-affected images as positive and negative samples, respectively. Experimental results show that our TriDoNet can generate superior artifact-reduced CT images.
Abstract:Email has remained a principal form of communication among people, both in enterprise and social settings. With a deluge of emails crowding our mailboxes daily, there is a dire need of smart email systems that can recover important emails and make personalized recommendations. In this work, we study the problem of predicting user triage actions to incoming emails where we take the reply prediction as a working example. Different from existing methods, we formulate the triage action prediction as a recommendation problem and focus on the content-based approach, where the users are represented using the content of current and past emails. We also introduce additional similarity features to further explore the affinities between users and emails. Experiments on the publicly available Avocado email collection demonstrate the advantages of our proposed recommendation framework and our method is able to achieve better performance compared to the state-of-the-art deep recommendation methods. More importantly, we provide valuable insight into the effectiveness of different textual and user representations and show that traditional bag-of-words approaches, with the help from the similarity features, compete favorably with the more advanced neural embedding methods.
Abstract:Topic models have emerged as fundamental tools in unsupervised machine learning. Most modern topic modeling algorithms take a probabilistic view and derive inference algorithms based on Latent Dirichlet Allocation (LDA) or its variants. In contrast, we study topic modeling as a combinatorial optimization problem, and propose a new objective function derived from LDA by passing to the small-variance limit. We minimize the derived objective by using ideas from combinatorial optimization, which results in a new, fast, and high-quality topic modeling algorithm. In particular, we show that our results are competitive with popular LDA-based topic modeling approaches, and also discuss the (dis)similarities between our approach and its probabilistic counterparts.
Abstract:We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.