Abstract:Ring artifacts in computed tomography images, arising from the undesirable responses of detector units, significantly degrade image quality and diagnostic reliability. To address this challenge, we propose a dual-domain regularization model to effectively remove ring artifacts, while maintaining the integrity of the original CT image. The proposed model corrects the vertical stripe artifacts on the sinogram by innovatively updating the response inconsistency compensation coefficients of detector units, which is achieved by employing the group sparse constraint and the projection-view direction sparse constraint on the stripe artifacts. Simultaneously, we apply the sparse constraint on the reconstructed image to further rectified ring artifacts in the image domain. The key advantage of the proposed method lies in considering the relationship between the response inconsistency compensation coefficients of the detector units and the projection views, which enables a more accurate correction of the response of the detector units. An alternating minimization method is designed to solve the model. Comparative experiments on real photon counting detector data demonstrate that the proposed method not only surpasses existing methods in removing ring artifacts but also excels in preserving structural details and image fidelity.
Abstract:Recent deep learning-based methods have achieved promising performance for computed tomography metal artifact reduction (CTMAR). However, most of them suffer from two limitations: (i) the domain knowledge is not fully embedded into the network training; (ii) metal artifacts lack effective representation models. The aforementioned limitations leave room for further performance improvement. Against these issues, we propose a novel triple domain model-driven CTMAR network, termed as TriDoNet, whose network training exploits triple domain knowledge, i.e., the knowledge of the sinogram, CT image, and metal artifact domains. Specifically, to explore the non-local repetitive streaking patterns of metal artifacts, we encode them as an explicit tight frame sparse representation model with adaptive thresholds. Furthermore, we design a contrastive regularization (CR) built upon contrastive learning to exploit clean CT images and metal-affected images as positive and negative samples, respectively. Experimental results show that our TriDoNet can generate superior artifact-reduced CT images.