Abstract:Large Language Models (LLMs) have performed exceptionally in various text-generative tasks, including question answering, translation, code completion, etc. However, the over-assistance of LLMs has raised the challenge of "jailbreaking", which induces the model to generate malicious responses against the usage policy and society by designing adversarial prompts. With the emergence of jailbreak attack methods exploiting different vulnerabilities in LLMs, the corresponding safety alignment measures are also evolving. In this paper, we propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods. For instance, the attack methods are divided into black-box and white-box attacks based on the transparency of the target model. Meanwhile, we classify defense methods into prompt-level and model-level defenses. Additionally, we further subdivide these attack and defense methods into distinct sub-classes and present a coherent diagram illustrating their relationships. We also conduct an investigation into the current evaluation methods and compare them from different perspectives. Our findings aim to inspire future research and practical implementations in safeguarding LLMs against adversarial attacks. Above all, although jailbreak remains a significant concern within the community, we believe that our work enhances the understanding of this domain and provides a foundation for developing more secure LLMs.
Abstract:Off-policy evaluation is a key component of reinforcement learning which evaluates a target policy with offline data collected from behavior policies. It is a crucial step towards safe reinforcement learning and has been used in advertisement, recommender systems and many other applications. In these applications, sometimes the offline data is collected from multiple behavior policies. Previous works regard data from different behavior policies equally. Nevertheless, some behavior policies are better at producing good estimators while others are not. This paper starts with discussing how to correctly mix estimators produced by different behavior policies. We propose three ways to reduce the variance of the mixture estimator when all sub-estimators are unbiased or asymptotically unbiased. Furthermore, experiments on simulated recommender systems show that our methods are effective in reducing the Mean-Square Error of estimation.