Abstract:In this paper, we propose a self-supervised RGB-T tracking method. Different from existing deep RGB-T trackers that use a large number of annotated RGB-T image pairs for training, our RGB-T tracker is trained using unlabeled RGB-T video pairs in a self-supervised manner. We propose a novel cross-input consistency-based self-supervised training strategy based on the idea that tracking can be performed using different inputs. Specifically, we construct two distinct inputs using unlabeled RGB-T video pairs. We then track objects using these two inputs to generate results, based on which we construct our cross-input consistency loss. Meanwhile, we propose a reweighting strategy to make our loss function robust to low-quality training samples. We build our tracker on a Siamese correlation filter network. To the best of our knowledge, our tracker is the first self-supervised RGB-T tracker. Extensive experiments on two public RGB-T tracking benchmarks demonstrate that the proposed training strategy is effective. Remarkably, despite training only with a corpus of unlabeled RGB-T video pairs, our tracker outperforms seven supervised RGB-T trackers on the GTOT dataset.
Abstract:Multi-exposure image fusion (MEF) is an important area in computer vision and has attracted increasing interests in recent years. Apart from conventional algorithms, deep learning techniques have also been applied to multi-exposure image fusion. However, although much efforts have been made on developing MEF algorithms, the lack of benchmark makes it difficult to perform fair and comprehensive performance comparison among MEF algorithms, thus significantly hindering the development of this field. In this paper, we fill this gap by proposing a benchmark for multi-exposure image fusion (MEFB) which consists of a test set of 100 image pairs, a code library of 16 algorithms, 20 evaluation metrics, 1600 fused images and a software toolkit. To the best of our knowledge, this is the first benchmark in the field of multi-exposure image fusion. Extensive experiments have been conducted using MEFB for comprehensive performance evaluation and for identifying effective algorithms. We expect that MEFB will serve as an effective platform for researchers to compare performances and investigate MEF algorithms.
Abstract:Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and comprehensive performance comparison of MFIF methods, such as the lack of large-scale test set and the random choices of objective evaluation metrics in the literature. To solve these issues, this paper presents a multi-focus image fusion benchmark (MFIFB) which consists a test set of 105 image pairs, a code library of 30 MFIF algorithms, and 20 evaluation metrics. MFIFB is the first benchmark in the field of MFIF and provides the community a platform to compare MFIF algorithms fairly and comprehensively. Extensive experiments have been conducted using the proposed MFIFB to understand the performance of these algorithms. By analyzing the experimental results, effective MFIF algorithms are identified. More importantly, some observations on the status of the MFIF field are given, which can help to understand this field better.
Abstract:Visible and infrared image fusion is one of the most important areas in image processing due to its numerous applications. While much progress has been made in recent years with efforts on developing fusion algorithms, there is a lack of code library and benchmark which can gauge the state-of-the-art. In this paper, after briefly reviewing recent advances of visible and infrared image fusion, we present a visible and infrared image fusion benchmark (VIFB) which consists of 21 image pairs, a code library of 20 fusion algorithms and 13 evaluation metrics. We also carry out large scale experiments within the benchmark to understand the performance of these algorithms. By analyzing qualitative and quantitative results, we identify effective algorithms for robust image fusion and give some observations on the status and future prospects of this field. The benchmark, including dataset, code library, evaluation metrics, and results is available upon request.