Abstract:Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic abilities remain largely unexplored. Game theory provides a good framework for assessing the decision-making abilities of LLMs in interactions with other agents. Although prior studies have shown that LLMs can solve these tasks with carefully curated prompts, they fail when the problem setting or prompt changes. In this work we investigate LLMs' behaviour in strategic games, Stag Hunt and Prisoner Dilemma, analyzing performance variations under different settings and prompts. Our results show that the tested state-of-the-art LLMs exhibit at least one of the following systematic biases: (1) positional bias, (2) payoff bias, or (3) behavioural bias. Subsequently, we observed that the LLMs' performance drops when the game configuration is misaligned with the affecting biases. Performance is assessed based on the selection of the correct action, one which agrees with the prompted preferred behaviours of both players. Alignment refers to whether the LLM's bias aligns with the correct action. For example, GPT-4o's average performance drops by 34% when misaligned. Additionally, the current trend of "bigger and newer is better" does not hold for the above, where GPT-4o (the current best-performing LLM) suffers the most substantial performance drop. Lastly, we note that while chain-of-thought prompting does reduce the effect of the biases on most models, it is far from solving the problem at the fundamental level.
Abstract:This survey presents an overview of methods for learning from video (LfV) in the context of reinforcement learning (RL) and robotics. We focus on methods capable of scaling to large internet video datasets and, in the process, extracting foundational knowledge about the world's dynamics and physical human behaviour. Such methods hold great promise for developing general-purpose robots. We open with an overview of fundamental concepts relevant to the LfV-for-robotics setting. This includes a discussion of the exciting benefits LfV methods can offer (e.g., improved generalization beyond the available robot data) and commentary on key LfV challenges (e.g., challenges related to missing information in video and LfV distribution shifts). Our literature review begins with an analysis of video foundation model techniques that can extract knowledge from large, heterogeneous video datasets. Next, we review methods that specifically leverage video data for robot learning. Here, we categorise work according to which RL knowledge modality benefits from the use of video data. We additionally highlight techniques for mitigating LfV challenges, including reviewing action representations that address the issue of missing action labels in video. Finally, we examine LfV datasets and benchmarks, before concluding the survey by discussing challenges and opportunities in LfV. Here, we advocate for scalable approaches that can leverage the full range of available data and that target the key benefits of LfV. Overall, we hope this survey will serve as a comprehensive reference for the emerging field of LfV, catalysing further research in the area, and ultimately facilitating progress towards obtaining general-purpose robots.