Abstract:We present QGen Studio: an adaptive question-answer generation, training, and evaluation platform. QGen Studio enables users to leverage large language models (LLMs) to create custom question-answer datasets and fine-tune models on this synthetic data. It features a dataset viewer and model explorer to streamline this process. The dataset viewer provides key metrics and visualizes the context from which the QA pairs are generated, offering insights into data quality. The model explorer supports model comparison, allowing users to contrast the performance of their trained LLMs against other models, supporting performance benchmarking and refinement. QGen Studio delivers an interactive, end-to-end solution for generating QA datasets and training scalable, domain-adaptable models. The studio will be open-sourced soon, allowing users to deploy it locally.
Abstract:Current time-series forecasting problems use short-term weather attributes as exogenous inputs. However, in specific time-series forecasting solutions (e.g., demand prediction in the supply chain), seasonal climate predictions are crucial to improve its resilience. Representing mid to long-term seasonal climate forecasts is challenging as seasonal climate predictions are uncertain, and encoding spatio-temporal relationship of climate forecasts with demand is complex. We propose a novel modeling framework that efficiently encodes seasonal climate predictions to provide robust and reliable time-series forecasting for supply chain functions. The encoding framework enables effective learning of latent representations -- be it uncertain seasonal climate prediction or other time-series data (e.g., buyer patterns) -- via a modular neural network architecture. Our extensive experiments indicate that learning such representations to model seasonal climate forecast results in an error reduction of approximately 13\% to 17\% across multiple real-world data sets compared to existing demand forecasting methods.