Abstract:Accurate prediction of traffic crash risks for individual vehicles is essential for enhancing vehicle safety. While significant attention has been given to traffic crash risk prediction, existing studies face two main challenges: First, due to the scarcity of individual vehicle data before crashes, most models rely on hypothetical scenarios deemed dangerous by researchers. This raises doubts about their applicability to actual pre-crash conditions. Second, some crash risk prediction frameworks were learned from dashcam videos. Although such videos capture the pre-crash behavior of individual vehicles, they often lack critical information about the movements of surrounding vehicles. However, the interaction between a vehicle and its surrounding vehicles is highly influential in crash occurrences. To overcome these challenges, we propose a novel non-stationary extreme value theory (EVT), where the covariate function is optimized in a nonlinear fashion using a graph attention network. The EVT component incorporates the stochastic nature of crashes through probability distribution, which enhances model interpretability. Notably, the nonlinear covariate function enables the model to capture the interactive behavior between the target vehicle and its multiple surrounding vehicles, facilitating crash risk prediction across different driving tasks. We train and test our model using 100 sets of vehicle trajectory data before real crashes, collected via drones over three years from merging and weaving segments. We demonstrate that our model successfully learns micro-level precursors of crashes and fits a more accurate distribution with the aid of the nonlinear covariate function. Our experiments on the testing dataset show that the proposed model outperforms existing models by providing more accurate predictions for both rear-end and sideswipe crashes simultaneously.
Abstract:Remote photoplethysmography (rPPG) is an attractive method for noninvasive, convenient and concomitant measurement of physiological vital signals. Public benchmark datasets have served a valuable role in the development of this technology and improvements in accuracy over recent years.However, there remain gaps the public datasets.First, despite the ubiquity of cameras on mobile devices, there are few datasets recorded specifically with mobile phones cameras. Second, most datasets are relatively small and therefore are limited in diversity, both in appearance (e.g., skin tone), behaviors (e.g., motion) and enivornment (e.g., lighting conditions). In an effort to help the field advance, we present the Multi-domain Mobile Video Physiology Dataset (MMPD), comprising 11 hours of recordings from mobile phones of 33 subjects. The dataset was designed to capture videos with greater representation across skin tone, body motion, and lighting conditions. MMPD is comprehensive with eight descriptive labels and can be used in conjunction with the rPPG-toolbox. The Github repository of our dataset: {https://github.com/McJackTang/MMPD_rPPG_dataset}