Abstract:Document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially in academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of academic papers sourced from arXiv, multiple strategies are proposed to generate automatically 1M QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal PDF understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
Abstract:Applying diffusion models in reinforcement learning for long-term planning has gained much attention recently. Several diffusion-based methods have successfully leveraged the modeling capabilities of diffusion for arbitrary distributions. These methods generate subsequent trajectories for planning and have demonstrated significant improvement. However, these methods are limited by their plain base distributions and their overlooking of the diversity of samples, in which different states have different returns. They simply leverage diffusion to learn the distribution of offline dataset, generate the trajectories whose states share the same distribution with the offline dataset. As a result, the probability of these models reaching the high-return states is largely dependent on the dataset distribution. Even equipped with the guidance model, the performance is still suppressed. To address these limitations, in this paper, we propose a novel method called CDiffuser, which devises a return contrast mechanism to pull the states in generated trajectories towards high-return states while pushing them away from low-return states to improve the base distribution. Experiments on 14 commonly used D4RL benchmarks demonstrate the effectiveness of our proposed method.
Abstract:Computerized Adaptive Testing(CAT) refers to an online system that adaptively selects the best-suited question for students with various abilities based on their historical response records. Most CAT methods only focus on the quality objective of predicting the student ability accurately, but neglect concept diversity or question exposure control, which are important considerations in ensuring the performance and validity of CAT. Besides, the students' response records contain valuable relational information between questions and knowledge concepts. The previous methods ignore this relational information, resulting in the selection of sub-optimal test questions. To address these challenges, we propose a Graph-Enhanced Multi-Objective method for CAT (GMOCAT). Firstly, three objectives, namely quality, diversity and novelty, are introduced into the Scalarized Multi-Objective Reinforcement Learning framework of CAT, which respectively correspond to improving the prediction accuracy, increasing the concept diversity and reducing the question exposure. We use an Actor-Critic Recommender to select questions and optimize three objectives simultaneously by the scalarization function. Secondly, we utilize the graph neural network to learn relation-aware embeddings of questions and concepts. These embeddings are able to aggregate neighborhood information in the relation graphs between questions and concepts. We conduct experiments on three real-world educational datasets, and show that GMOCAT not only outperforms the state-of-the-art methods in the ability prediction, but also achieve superior performance in improving the concept diversity and alleviating the question exposure. Our code is available at https://github.com/justarter/GMOCAT.