Abstract:Recent studies have raised significant concerns regarding the vulnerability of Large Vision Language Models (LVLMs) to maliciously injected or perturbed input images, which can mislead their responses. Existing defense methods show that such vision attacks are sensitive to image modifications especially cropping, using majority voting across responses of modified images as corrected responses. However, these modifications often result in partial images and distort the semantics, which reduces response quality on clean images after voting. Instead of directly using responses from partial images for voting, we investigate using them to supervise the LVLM's responses to the original images. We propose a black-box, training-free method called DPS (Defense through Partial-Perception Supervision). In this approach, the model is prompted using the responses generated by a model that perceives only a partial image. With DPS, the model can adjust its response based on partial image understanding when under attack, while confidently maintaining its original response for clean input. Our findings show that the weak model can supervise the strong model: when faced with an attacked input, the strong model becomes less confident and adjusts its response based on the weak model's partial understanding, effectively defending against the attack. With clean input, it confidently maintains its original response. Empirical experiments show our method outperforms the baseline, cutting the average attack success rate by 76.3% across six datasets on three popular models.
Abstract:Large language models (LLMs) have shown promising potential for next Point-of-Interest (POI) recommendation. However, existing methods only perform direct zero-shot prompting, leading to ineffective extraction of user preferences, insufficient injection of collaborative signals, and a lack of user privacy protection. As such, we propose a novel Multitask Reflective Large Language Model for Privacy-preserving Next POI Recommendation (MRP-LLM), aiming to exploit LLMs for better next POI recommendation while preserving user privacy. Specifically, the Multitask Reflective Preference Extraction Module first utilizes LLMs to distill each user's fine-grained (i.e., categorical, temporal, and spatial) preferences into a knowledge base (KB). The Neighbor Preference Retrieval Module retrieves and summarizes the preferences of similar users from the KB to obtain collaborative signals. Subsequently, aggregating the user's preferences with those of similar users, the Multitask Next POI Recommendation Module generates the next POI recommendations via multitask prompting. Meanwhile, during data collection, a Privacy Transmission Module is specifically devised to preserve sensitive POI data. Extensive experiments on three real-world datasets demonstrate the efficacy of our proposed MRP-LLM in providing more accurate next POI recommendations with user privacy preserved.
Abstract:Large Language Models (LLMs) have increasingly become pivotal in content generation with notable societal impact. These models hold the potential to generate content that could be deemed harmful.Efforts to mitigate this risk include implementing safeguards to ensure LLMs adhere to social ethics.However, despite such measures, the phenomenon of "jailbreaking" -- where carefully crafted prompts elicit harmful responses from models -- persists as a significant challenge. Recognizing the continuous threat posed by jailbreaking tactics and their repercussions for the trustworthy use of LLMs, a rigorous assessment of the models' robustness against such attacks is essential. This study introduces an comprehensive evaluation framework and conducts an large-scale empirical experiment to address this need. We concentrate on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs. We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak. By normalizing and aggregating these metrics, we present a detailed reliability score for different LLMs, coupled with strategic recommendations to reduce their susceptibility to such vulnerabilities. Additionally, we explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework. Our extensive experimental results demonstrate a lack of resilience among all tested LLMs against certain strategies, and highlight the need to concentrate on the reliability facets of LLMs. We believe our study can provide valuable insights into enhancing the security evaluation of LLMs against jailbreak within the domain.
Abstract:Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of an LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200,000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.
Abstract:Recommender systems (RSs) are designed to provide personalized recommendations to users. Recently, knowledge graphs (KGs) have been widely introduced in RSs to improve recommendation accuracy. In this study, however, we demonstrate that RSs do not necessarily perform worse even if the KG is downgraded to the user-item interaction graph only (or removed). We propose an evaluation framework KG4RecEval to systematically evaluate how much a KG contributes to the recommendation accuracy of a KG-based RS, using our defined metric KGER (KG utilization efficiency in recommendation). We consider the scenarios where knowledge in a KG gets completely removed, randomly distorted and decreased, and also where recommendations are for cold-start users. Our extensive experiments on four commonly used datasets and a number of state-of-the-art KG-based RSs reveal that: to remove, randomly distort or decrease knowledge does not necessarily decrease recommendation accuracy, even for cold-start users. These findings inspire us to rethink how to better utilize knowledge from existing KGs, whereby we discuss and provide insights into what characteristics of datasets and KG-based RSs may help improve KG utilization efficiency.
Abstract:Guided image synthesis methods, like SDEdit based on the diffusion model, excel at creating realistic images from user inputs such as stroke paintings. However, existing efforts mainly focus on image quality, often overlooking a key point: the diffusion model represents a data distribution, not individual images. This introduces a low but critical chance of generating images that contradict user intentions, raising ethical concerns. For example, a user inputting a stroke painting with female characteristics might, with some probability, get male faces from SDEdit. To expose this potential vulnerability, we aim to build an adversarial attack forcing SDEdit to generate a specific data distribution aligned with a specified attribute (e.g., female), without changing the input's attribute characteristics. We propose the Targeted Attribute Generative Attack (TAGA), using an attribute-aware objective function and optimizing the adversarial noise added to the input stroke painting. Empirical studies reveal that traditional adversarial noise struggles with TAGA, while natural perturbations like exposure and motion blur easily alter generated images' attributes. To execute effective attacks, we introduce FoolSDEdit: We design a joint adversarial exposure and blur attack, adding exposure and motion blur to the stroke painting and optimizing them together. We optimize the execution strategy of various perturbations, framing it as a network architecture search problem. We create the SuperPert, a graph representing diverse execution strategies for different perturbations. After training, we obtain the optimized execution strategy for effective TAGA against SDEdit. Comprehensive experiments on two datasets show our method compelling SDEdit to generate a targeted attribute-aware data distribution, significantly outperforming baselines.
Abstract:Deep learning-based recommender systems (DRSs) are increasingly and widely deployed in the industry, which brings significant convenience to people's daily life in different ways. However, recommender systems are also shown to suffer from multiple issues,e.g., the echo chamber and the Matthew effect, of which the notation of "fairness" plays a core role.While many fairness notations and corresponding fairness testing approaches have been developed for traditional deep classification models, they are essentially hardly applicable to DRSs. One major difficulty is that there still lacks a systematic understanding and mapping between the existing fairness notations and the diverse testing requirements for deep recommender systems, not to mention further testing or debugging activities. To address the gap, we propose FairRec, a unified framework that supports fairness testing of DRSs from multiple customized perspectives, e.g., model utility, item diversity, item popularity, etc. We also propose a novel, efficient search-based testing approach to tackle the new challenge, i.e., double-ended discrete particle swarm optimization (DPSO) algorithm, to effectively search for hidden fairness issues in the form of certain disadvantaged groups from a vast number of candidate groups. Given the testing report, by adopting a simple re-ranking mitigation strategy on these identified disadvantaged groups, we show that the fairness of DRSs can be significantly improved. We conducted extensive experiments on multiple industry-level DRSs adopted by leading companies. The results confirm that FairRec is effective and efficient in identifying the deeply hidden fairness issues, e.g., achieving 95% testing accuracy with half to 1/8 time.
Abstract:Weighted Majority Voting (WMV) is a well-known optimal decision rule for collective decision making, given the probability of sources to provide accurate information (trustworthiness). However, in reality, the trustworthiness is not a known quantity to the decision maker - they have to rely on an estimate called trust. A (machine learning) algorithm that computes trust is called unbiased when it has the property that it does not systematically overestimate or underestimate the trustworthiness. To formally analyse the uncertainty to the decision process, we introduce and analyse two important properties of such unbiased trust values: stability of correctness and stability of optimality. Stability of correctness means that the decision accuracy that the decision maker believes they achieved is equal to the actual accuracy. We prove stability of correctness holds. Stability of optimality means that the decisions made based on trust, are equally good as they would have been if they were based on trustworthiness. Stability of optimality does not hold. We analyse the difference between the two, and bounds thereon. We also present an overview of how sensitive decision correctness is to changes in trust and trustworthiness.