Abstract:We present ZSL-RPPO, an improved zero-shot learning architecture that overcomes the limitations of teacher-student neural networks and enables generating robust, reliable, and versatile locomotion for quadrupedal robots in challenging terrains. We propose a new algorithm RPPO (Recurrent Proximal Policy Optimization) that directly trains recurrent neural network in partially observable environments and results in more robust training using domain randomization. Our locomotion controller supports extensive perturbation across simulation-to-reality transfer for both intrinsic and extrinsic physical parameters without further fine-tuning. This can avoid the significant decline of student's performance during simulation-to-reality transfer and therefore enhance the robustness and generalization of the locomotion controller. We deployed our controller on the Unitree A1 and Aliengo robots in real environment and exteroceptive perception is provided by either a solid-state Lidar or a depth camera. Our locomotion controller was tested in various challenging terrains like slippery surfaces, Grassy Terrain, and stairs. Our experiment results and comparison show that our approach significantly outperforms the state-of-the-art.
Abstract:Face images contain a wide variety of attribute information. In this paper, we propose a generalized framework for joint estimation of ordinal and nominal attributes based on information sharing. We tackle the correlation problem between heterogeneous attributes using hard parameter sharing of shallow features, and trade-off multiple loss functions by considering homoskedastic uncertainty for each attribute estimation task. This leads to optimal estimation of multiple attributes of the face and reduces the training cost of multitask learning. Experimental results on benchmarks with multiple face attributes show that the proposed approach has superior performance compared to state of the art. Finally, we discuss the bias issues arising from the proposed approach in face attribute estimation and validate its feasibility on edge systems.
Abstract:In this paper, we present LiGNN, a deployed large-scale Graph Neural Networks (GNNs) Framework. We share our insight on developing and deployment of GNNs at large scale at LinkedIn. We present a set of algorithmic improvements to the quality of GNN representation learning including temporal graph architectures with long term losses, effective cold start solutions via graph densification, ID embeddings and multi-hop neighbor sampling. We explain how we built and sped up by 7x our large-scale training on LinkedIn graphs with adaptive sampling of neighbors, grouping and slicing of training data batches, specialized shared-memory queue and local gradient optimization. We summarize our deployment lessons and learnings gathered from A/B test experiments. The techniques presented in this work have contributed to an approximate relative improvements of 1% of Job application hearing back rate, 2% Ads CTR lift, 0.5% of Feed engaged daily active users, 0.2% session lift and 0.1% weekly active user lift from people recommendation. We believe that this work can provide practical solutions and insights for engineers who are interested in applying Graph neural networks at large scale.
Abstract:Interactive image synthesis from user-guided input is a challenging task when users wish to control the scene structure of a generated image with ease.Although remarkable progress has been made on layout-based image synthesis approaches, in order to get realistic fake image in interactive scene, existing methods require high-precision inputs, which probably need adjustment several times and are unfriendly to novice users. When placement of bounding boxes is subject to perturbation, layout-based models suffer from "missing regions" in the constructed semantic layouts and hence undesirable artifacts in the generated images. In this work, we propose Panoptic Layout Generative Adversarial Networks (PLGAN) to address this challenge. The PLGAN employs panoptic theory which distinguishes object categories between "stuff" with amorphous boundaries and "things" with well-defined shapes, such that stuff and instance layouts are constructed through separate branches and later fused into panoptic layouts. In particular, the stuff layouts can take amorphous shapes and fill up the missing regions left out by the instance layouts. We experimentally compare our PLGAN with state-of-the-art layout-based models on the COCO-Stuff, Visual Genome, and Landscape datasets. The advantages of PLGAN are not only visually demonstrated but quantitatively verified in terms of inception score, Fr\'echet inception distance, classification accuracy score, and coverage.
Abstract:This paper focuses on channel pruning for semantic segmentation networks. There are a large number of works to compress and accelerate deep neural networks in the classification task (e.g., ResNet-50 on ImageNet), but they cannot be straightforwardly applied to the semantic segmentation network that involves an implicit multi-task learning problem. To boost the segmentation performance, the backbone of semantic segmentation network is often pre-trained on a large scale classification dataset (e.g., ImageNet), and then optimized on the desired segmentation dataset. Hence to identify the redundancy in segmentation networks, we present a multi-task channel pruning approach. The importance of each convolution filter w.r.t the channel of an arbitrary layer will be simultaneously determined by the classification and segmentation tasks. In addition, we develop an alternative scheme for optimizing importance scores of filters in the entire network. Experimental results on several benchmarks illustrate the superiority of the proposed algorithm over the state-of-the-art pruning methods. Notably, we can obtain an about $2\times$ FLOPs reduction on DeepLabv3 with only an about $1\%$ mIoU drop on the PASCAL VOC 2012 dataset and an about $1.3\%$ mIoU drop on Cityscapes dataset, respectively.
Abstract:Utilizing computed tomography (CT) images to quickly estimate the severity of cases with COVID-19 is one of the most straightforward and efficacious methods. Two tasks were studied in this present paper. One was to segment the mask of intact lung in case of pneumonia. Another was to generate the masks of regions infected by COVID-19. The masks of these two parts of images then were converted to corresponding volumes to calculate the physical proportion of infected region of lung. A total of 129 CT image set were herein collected and studied. The intrinsic Hounsfiled value of CT images was firstly utilized to generate the initial dirty version of labeled masks both for intact lung and infected regions. Then, the samples were carefully adjusted and improved by two professional radiologists to generate the final training set and test benchmark. Two deep learning models were evaluated: UNet and 2.5D UNet. For the segment of infected regions, a deep learning based classifier was followed to remove unrelated blur-edged regions that were wrongly segmented out such as air tube and blood vessel tissue etc. For the segmented masks of intact lung and infected regions, the best method could achieve 0.972 and 0.757 measure in mean Dice similarity coefficient on our test benchmark. As the overall proportion of infected region of lung, the final result showed 0.961 (Pearson's correlation coefficient) and 11.7% (mean absolute percent error). The instant proportion of infected regions of lung could be used as a visual evidence to assist clinical physician to determine the severity of the case. Furthermore, a quantified report of infected regions can help predict the prognosis for COVID-19 cases which were scanned periodically within the treatment cycle.
Abstract:We found that the real time reverse transcription-polymerase chain reaction (RT-PCR) detection of viral RNA from sputum or nasopharyngeal swab has a relatively low positive rate in the early stage to determine COVID-19 (named by the World Health Organization). The manifestations of computed tomography (CT) imaging of COVID-19 had their own characteristics, which are different from other types of viral pneumonia, such as Influenza-A viral pneumonia. Therefore, clinical doctors call for another early diagnostic criteria for this new type of pneumonia as soon as possible.This study aimed to establish an early screening model to distinguish COVID-19 pneumonia from Influenza-A viral pneumonia and healthy cases with pulmonary CT images using deep learning techniques. The candidate infection regions were first segmented out using a 3-dimensional deep learning model from pulmonary CT image set. These separated images were then categorized into COVID-19, Influenza-A viral pneumonia and irrelevant to infection groups, together with the corresponding confidence scores using a location-attention classification model. Finally the infection type and total confidence score of this CT case were calculated with Noisy-or Bayesian function.The experiments result of benchmark dataset showed that the overall accuracy was 86.7 % from the perspective of CT cases as a whole.The deep learning models established in this study were effective for the early screening of COVID-19 patients and demonstrated to be a promising supplementary diagnostic method for frontline clinical doctors.
Abstract:We developed a deep learning model-based system to automatically generate a quantitative Computed Tomography (CT) diagnostic report for Pulmonary Tuberculosis (PTB) cases.501 CT imaging datasets from 223 patients with active PTB were collected, and another 501 cases from a healthy population served as negative samples.2884 lesions of PTB were carefully labeled and classified manually by professional radiologists.Three state-of-the-art 3D convolution neural network (CNN) models were trained and evaluated in the inspection of PTB CT images. Transfer learning method was also utilized during this process. The best model was selected to annotate the spatial location of lesions and classify them into miliary, infiltrative, caseous, tuberculoma and cavitary types simultaneously.Then the Noisy-Or Bayesian function was used to generate an overall infection probability.Finally, a quantitative diagnostic report was exported.The results showed that the recall and precision rates, from the perspective of a single lesion region of PTB, were 85.9% and 89.2% respectively. The overall recall and precision rates,from the perspective of one PTB case, were 98.7% and 93.7%, respectively. Moreover, the precision rate of the PTB lesion type classification was 90.9%.The new method might serve as an effective reference for decision making by clinical doctors.
Abstract:3D content creation is referred to as one of the most fundamental tasks of computer graphics. And many 3D modeling algorithms from 2D images or curves have been developed over the past several decades. Designers are allowed to align some conceptual images or sketch some suggestive curves, from front, side, and top views, and then use them as references in constructing a 3D model automatically or manually. However, to the best of our knowledge, no studies have investigated on 3D human body reconstruction in a similar manner. In this paper, we propose a deep learning based reconstruction of 3D human body shape from 2D orthographic views. A novel CNN-based regression network, with two branches corresponding to frontal and lateral views respectively, is designed for estimating 3D human body shape from 2D mask images. We train our networks separately to decouple the feature descriptors which encode the body parameters from different views, and fuse them to estimate an accurate human body shape. In addition, to overcome the shortage of training data required for this purpose, we propose some significantly data augmentation schemes for 3D human body shapes, which can be used to promote further research on this topic. Extensive experimen- tal results demonstrate that visually realistic and accurate reconstructions can be achieved effectively using our algorithm. Requiring only binary mask images, our method can help users create their own digital avatars quickly, and also make it easy to create digital human body for 3D game, virtual reality, online fashion shopping.