Shammie
Abstract:Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.
Abstract:Large language models memorize parts of their training data. Memorizing short snippets and facts is required to answer questions about the world and to be fluent in any language. But models have also been shown to reproduce long verbatim sequences of memorized text when prompted by a motivated adversary. In this work, we investigate an intermediate regime of memorization that we call non-adversarial reproduction, where we quantify the overlap between model responses and pretraining data when responding to natural and benign prompts. For a variety of innocuous prompt categories (e.g., writing a letter or a tutorial), we show that up to 15% of the text output by popular conversational language models overlaps with snippets from the Internet. In worst cases, we find generations where 100% of the content can be found exactly online. For the same tasks, we find that human-written text has far less overlap with Internet data. We further study whether prompting strategies can close this reproduction gap between models and humans. While appropriate prompting can reduce non-adversarial reproduction on average, we find that mitigating worst-case reproduction of training data requires stronger defenses -- even for benign interactions.
Abstract:Prior work has shown that language models can be tuned to follow user instructions using only a small set of high-quality instructions. This has accelerated the development of methods that filter a large, noisy instruction-tuning datasets down to high-quality subset which works just as well. However, typically, the performance of these methods is not demonstrated across a uniform experimental setup and thus their generalization capabilities are not well established. In this work, we analyze popular selection strategies across different source datasets, selection budgets and evaluation benchmarks: Our results indicate that selection strategies generalize poorly, often failing to consistently outperform even random baselines. We also analyze the cost-performance trade-offs of using data selection. Our findings reveal that data selection can often exceed the cost of fine-tuning on the full dataset, yielding only marginal and sometimes no gains compared to tuning on the full dataset or a random subset.
Abstract:Large language models are pre-trained on uncurated text datasets consisting of trillions of tokens scraped from the Web. Prior work has shown that: (1) web-scraped pre-training datasets can be practically poisoned by malicious actors; and (2) adversaries can compromise language models after poisoning fine-tuning datasets. Our work evaluates for the first time whether language models can also be compromised during pre-training, with a focus on the persistence of pre-training attacks after models are fine-tuned as helpful and harmless chatbots (i.e., after SFT and DPO). We pre-train a series of LLMs from scratch to measure the impact of a potential poisoning adversary under four different attack objectives (denial-of-service, belief manipulation, jailbreaking, and prompt stealing), and across a wide range of model sizes (from 600M to 7B). Our main result is that poisoning only 0.1% of a model's pre-training dataset is sufficient for three out of four attacks to measurably persist through post-training. Moreover, simple attacks like denial-of-service persist through post-training with a poisoning rate of only 0.001%.
Abstract:Chess has long been a testbed for AI's quest to match human intelligence, and in recent years, chess AI systems have surpassed the strongest humans at the game. However, these systems are not human-aligned; they are unable to match the skill levels of all human partners or model human-like behaviors beyond piece movement. In this paper, we introduce Allie, a chess-playing AI designed to bridge the gap between artificial and human intelligence in this classic game. Allie is trained on log sequences of real chess games to model the behaviors of human chess players across the skill spectrum, including non-move behaviors such as pondering times and resignations In offline evaluations, we find that Allie exhibits humanlike behavior: it outperforms the existing state-of-the-art in human chess move prediction and "ponders" at critical positions. The model learns to reliably assign reward at each game state, which can be used at inference as a reward function in a novel time-adaptive Monte-Carlo tree search (MCTS) procedure, where the amount of search depends on how long humans would think in the same positions. Adaptive search enables remarkable skill calibration; in a large-scale online evaluation against players with ratings from 1000 to 2600 Elo, our adaptive search method leads to a skill gap of only 49 Elo on average, substantially outperforming search-free and standard MCTS baselines. Against grandmaster-level (2500 Elo) opponents, Allie with adaptive search exhibits the strength of a fellow grandmaster, all while learning exclusively from humans.
Abstract:One-size-fits-all large language models (LLMs) are increasingly being used to help people with their writing. However, the style these models are trained to write in may not suit all users or use cases. LLMs would be more useful as writing assistants if their idiolect could be customized to match each user. In this paper, we explore whether parameter-efficient finetuning (PEFT) with Low-Rank Adaptation can effectively guide the style of LLM generations. We use this method to customize LLaMA-2 to ten different authors and show that the generated text has lexical, syntactic, and surface alignment with the target author but struggles with content memorization. Our findings highlight the potential of PEFT to support efficient, user-level customization of LLMs.
Abstract:General-purpose artificial intelligence (AI) systems are built on massive swathes of public web data, assembled into corpora such as C4, RefinedWeb, and Dolma. To our knowledge, we conduct the first, large-scale, longitudinal audit of the consent protocols for the web domains underlying AI training corpora. Our audit of 14,000 web domains provides an expansive view of crawlable web data and how codified data use preferences are changing over time. We observe a proliferation of AI-specific clauses to limit use, acute differences in restrictions on AI developers, as well as general inconsistencies between websites' expressed intentions in their Terms of Service and their robots.txt. We diagnose these as symptoms of ineffective web protocols, not designed to cope with the widespread re-purposing of the internet for AI. Our longitudinal analyses show that in a single year (2023-2024) there has been a rapid crescendo of data restrictions from web sources, rendering ~5%+ of all tokens in C4, or 28%+ of the most actively maintained, critical sources in C4, fully restricted from use. For Terms of Service crawling restrictions, a full 45% of C4 is now restricted. If respected or enforced, these restrictions are rapidly biasing the diversity, freshness, and scaling laws for general-purpose AI systems. We hope to illustrate the emerging crises in data consent, for both developers and creators. The foreclosure of much of the open web will impact not only commercial AI, but also non-commercial AI and academic research.
Abstract:Many commercial and open-source models claim to detect machine-generated text with very high accuracy (99\% or higher). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging -- lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our dataset and tools to encourage further exploration into detector robustness.
Abstract:We develop a methodology for analyzing language model task performance at the individual example level based on training data density estimation. Experiments with paraphrasing as a controlled intervention on finetuning data demonstrate that increasing the support in the training distribution for specific test queries results in a measurable increase in density, which is also a significant predictor of the performance increase caused by the intervention. Experiments with pretraining data demonstrate that we can explain a significant fraction of the variance in model perplexity via density measurements. We conclude that our framework can provide statistical evidence of the dependence of a target model's predictions on subsets of its training data, and can more generally be used to characterize the support (or lack thereof) in the training data for a given test task.
Abstract:Despite being trained specifically to follow user instructions, today's language models perform poorly when instructed to produce random outputs. For example, when prompted to pick a number uniformly between one and ten Llama-2-13B-chat disproportionately favors the number five, and when tasked with picking a first name at random, Mistral-7B-Instruct chooses Avery 40 times more often than we would expect based on the U.S. population. When these language models are used for real-world tasks where diversity of outputs is crucial, such as language model assisted dataset construction, their inability to produce diffuse distributions over valid choices is a major hurdle. In this work, we propose a fine-tuning method that encourages language models to output distributions that are diffuse over valid outcomes. The methods we introduce generalize across a variety of tasks and distributions and make large language models practical for synthetic dataset generation with little human intervention.