Abstract:Copyright infringement in frontier LLMs has received much attention recently due to the New York Times v. OpenAI lawsuit, filed in December 2023. The New York Times claims that GPT-4 has infringed its copyrights by reproducing articles for use in LLM training and by memorizing the inputs, thereby publicly displaying them in LLM outputs. Our work aims to measure the propensity of OpenAI's LLMs to exhibit verbatim memorization in its outputs relative to other LLMs, specifically focusing on news articles. We discover that both GPT and Claude models use refusal training and output filters to prevent verbatim output of the memorized articles. We apply a basic prompt template to bypass the refusal training and show that OpenAI models are currently less prone to memorization elicitation than models from Meta, Mistral, and Anthropic. We find that as models increase in size, especially beyond 100 billion parameters, they demonstrate significantly greater capacity for memorization. Our findings have practical implications for training: more attention must be placed on preventing verbatim memorization in very large models. Our findings also have legal significance: in assessing the relative memorization capacity of OpenAI's LLMs, we probe the strength of The New York Times's copyright infringement claims and OpenAI's legal defenses, while underscoring issues at the intersection of generative AI, law, and policy.
Abstract:Large language models memorize parts of their training data. Memorizing short snippets and facts is required to answer questions about the world and to be fluent in any language. But models have also been shown to reproduce long verbatim sequences of memorized text when prompted by a motivated adversary. In this work, we investigate an intermediate regime of memorization that we call non-adversarial reproduction, where we quantify the overlap between model responses and pretraining data when responding to natural and benign prompts. For a variety of innocuous prompt categories (e.g., writing a letter or a tutorial), we show that up to 15% of the text output by popular conversational language models overlaps with snippets from the Internet. In worst cases, we find generations where 100% of the content can be found exactly online. For the same tasks, we find that human-written text has far less overlap with Internet data. We further study whether prompting strategies can close this reproduction gap between models and humans. While appropriate prompting can reduce non-adversarial reproduction on average, we find that mitigating worst-case reproduction of training data requires stronger defenses -- even for benign interactions.
Abstract:Large Language Models (LLMs) are increasingly used in applications where the model selects from competing third-party content, such as in LLM-powered search engines or chatbot plugins. In this paper, we introduce Preference Manipulation Attacks, a new class of attacks that manipulate an LLM's selections to favor the attacker. We demonstrate that carefully crafted website content or plugin documentations can trick an LLM to promote the attacker products and discredit competitors, thereby increasing user traffic and monetization. We show this leads to a prisoner's dilemma, where all parties are incentivized to launch attacks, but the collective effect degrades the LLM's outputs for everyone. We demonstrate our attacks on production LLM search engines (Bing and Perplexity) and plugin APIs (for GPT-4 and Claude). As LLMs are increasingly used to rank third-party content, we expect Preference Manipulation Attacks to emerge as a significant threat.
Abstract:AI agents aim to solve complex tasks by combining text-based reasoning with external tool calls. Unfortunately, AI agents are vulnerable to prompt injection attacks where data returned by external tools hijacks the agent to execute malicious tasks. To measure the adversarial robustness of AI agents, we introduce AgentDojo, an evaluation framework for agents that execute tools over untrusted data. To capture the evolving nature of attacks and defenses, AgentDojo is not a static test suite, but rather an extensible environment for designing and evaluating new agent tasks, defenses, and adaptive attacks. We populate the environment with 97 realistic tasks (e.g., managing an email client, navigating an e-banking website, or making travel bookings), 629 security test cases, and various attack and defense paradigms from the literature. We find that AgentDojo poses a challenge for both attacks and defenses: state-of-the-art LLMs fail at many tasks (even in the absence of attacks), and existing prompt injection attacks break some security properties but not all. We hope that AgentDojo can foster research on new design principles for AI agents that solve common tasks in a reliable and robust manner. We release the code for AgentDojo at https://github.com/ethz-spylab/agentdojo.
Abstract:Large language model systems face important security risks from maliciously crafted messages that aim to overwrite the system's original instructions or leak private data. To study this problem, we organized a capture-the-flag competition at IEEE SaTML 2024, where the flag is a secret string in the LLM system prompt. The competition was organized in two phases. In the first phase, teams developed defenses to prevent the model from leaking the secret. During the second phase, teams were challenged to extract the secrets hidden for defenses proposed by the other teams. This report summarizes the main insights from the competition. Notably, we found that all defenses were bypassed at least once, highlighting the difficulty of designing a successful defense and the necessity for additional research to protect LLM systems. To foster future research in this direction, we compiled a dataset with over 137k multi-turn attack chats and open-sourced the platform.
Abstract:The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.
Abstract:Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) a new jailbreaking dataset containing 100 unique behaviors, which we call JBB-Behaviors; (2) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (3) a standardized evaluation framework that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community. Over time, we will expand and adapt the benchmark to reflect technical and methodological advances in the research community.
Abstract:The last six years have witnessed significant progress in adversarially robust deep learning. As evidenced by the CIFAR-10 dataset category in RobustBench benchmark, the accuracy under $\ell_\infty$ adversarial perturbations improved from 44\% in \citet{Madry2018Towards} to 71\% in \citet{peng2023robust}. Although impressive, existing state-of-the-art is still far from satisfactory. It is further observed that best-performing models are often very large models adversarially trained by industrial labs with significant computational budgets. In this paper, we aim to understand: ``how much longer can computing power drive adversarial robustness advances?" To answer this question, we derive \emph{scaling laws for adversarial robustness} which can be extrapolated in the future to provide an estimate of how much cost we would need to pay to reach a desired level of robustness. We show that increasing the FLOPs needed for adversarial training does not bring as much advantage as it does for standard training in terms of performance improvements. Moreover, we find that some of the top-performing techniques are difficult to exactly reproduce, suggesting that they are not robust enough for minor changes in the training setup. Our analysis also uncovers potentially worthwhile directions to pursue in future research. Finally, we make our benchmarking framework (built on top of \texttt{timm}~\citep{rw2019timm}) publicly available to facilitate future analysis in efficient robust deep learning.
Abstract:Most current approaches for protecting privacy in machine learning (ML) assume that models exist in a vacuum, when in reality, ML models are part of larger systems that include components for training data filtering, output monitoring, and more. In this work, we introduce privacy side channels: attacks that exploit these system-level components to extract private information at far higher rates than is otherwise possible for standalone models. We propose four categories of side channels that span the entire ML lifecycle (training data filtering, input preprocessing, output post-processing, and query filtering) and allow for either enhanced membership inference attacks or even novel threats such as extracting users' test queries. For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees. Moreover, we show that systems which block language models from regenerating training data can be exploited to allow exact reconstruction of private keys contained in the training set -- even if the model did not memorize these keys. Taken together, our results demonstrate the need for a holistic, end-to-end privacy analysis of machine learning.
Abstract:Decision-based evasion attacks repeatedly query a black-box classifier to generate adversarial examples. Prior work measures the cost of such attacks by the total number of queries made to the classifier. We argue this metric is flawed. Most security-critical machine learning systems aim to weed out "bad" data (e.g., malware, harmful content, etc). Queries to such systems carry a fundamentally asymmetric cost: queries detected as "bad" come at a higher cost because they trigger additional security filters, e.g., usage throttling or account suspension. Yet, we find that existing decision-based attacks issue a large number of "bad" queries, which likely renders them ineffective against security-critical systems. We then design new attacks that reduce the number of bad queries by $1.5$-$7.3\times$, but often at a significant increase in total (non-bad) queries. We thus pose it as an open problem to build black-box attacks that are more effective under realistic cost metrics.