Abstract:The EU's Artificial Intelligence Act (AI Act) is a significant step towards responsible AI development, but lacks clear technical interpretation, making it difficult to assess models' compliance. This work presents COMPL-AI, a comprehensive framework consisting of (i) the first technical interpretation of the EU AI Act, translating its broad regulatory requirements into measurable technical requirements, with the focus on large language models (LLMs), and (ii) an open-source Act-centered benchmarking suite, based on thorough surveying and implementation of state-of-the-art LLM benchmarks. By evaluating 12 prominent LLMs in the context of COMPL-AI, we reveal shortcomings in existing models and benchmarks, particularly in areas like robustness, safety, diversity, and fairness. This work highlights the need for a shift in focus towards these aspects, encouraging balanced development of LLMs and more comprehensive regulation-aligned benchmarks. Simultaneously, COMPL-AI for the first time demonstrates the possibilities and difficulties of bringing the Act's obligations to a more concrete, technical level. As such, our work can serve as a useful first step towards having actionable recommendations for model providers, and contributes to ongoing efforts of the EU to enable application of the Act, such as the drafting of the GPAI Code of Practice.
Abstract:AI agents aim to solve complex tasks by combining text-based reasoning with external tool calls. Unfortunately, AI agents are vulnerable to prompt injection attacks where data returned by external tools hijacks the agent to execute malicious tasks. To measure the adversarial robustness of AI agents, we introduce AgentDojo, an evaluation framework for agents that execute tools over untrusted data. To capture the evolving nature of attacks and defenses, AgentDojo is not a static test suite, but rather an extensible environment for designing and evaluating new agent tasks, defenses, and adaptive attacks. We populate the environment with 97 realistic tasks (e.g., managing an email client, navigating an e-banking website, or making travel bookings), 629 security test cases, and various attack and defense paradigms from the literature. We find that AgentDojo poses a challenge for both attacks and defenses: state-of-the-art LLMs fail at many tasks (even in the absence of attacks), and existing prompt injection attacks break some security properties but not all. We hope that AgentDojo can foster research on new design principles for AI agents that solve common tasks in a reliable and robust manner. We release the code for AgentDojo at https://github.com/ethz-spylab/agentdojo.
Abstract:Recent work in privacy research on large language models has shown that they achieve near human-level performance at inferring personal data from real-world online texts. With consistently increasing model capabilities, existing text anonymization methods are currently lacking behind regulatory requirements and adversarial threats. This raises the question of how individuals can effectively protect their personal data in sharing online texts. In this work, we take two steps to answer this question: We first present a new setting for evaluating anonymizations in the face of adversarial LLMs inferences, allowing for a natural measurement of anonymization performance while remedying some of the shortcomings of previous metrics. We then present our LLM-based adversarial anonymization framework leveraging the strong inferential capabilities of LLMs to inform our anonymization procedure. In our experimental evaluation, we show on real-world and synthetic online texts how adversarial anonymization outperforms current industry-grade anonymizers both in terms of the resulting utility and privacy.
Abstract:Aiming to train and deploy predictive models, organizations collect large amounts of detailed client data, risking the exposure of private information in the event of a breach. To mitigate this, policymakers increasingly demand compliance with the data minimization (DM) principle, restricting data collection to only that data which is relevant and necessary for the task. Despite regulatory pressure, the problem of deploying machine learning models that obey DM has so far received little attention. In this work, we address this challenge in a comprehensive manner. We propose a novel vertical DM (vDM) workflow based on data generalization, which by design ensures that no full-resolution client data is collected during training and deployment of models, benefiting client privacy by reducing the attack surface in case of a breach. We formalize and study the corresponding problem of finding generalizations that both maximize data utility and minimize empirical privacy risk, which we quantify by introducing a diverse set of policy-aligned adversarial scenarios. Finally, we propose a range of baseline vDM algorithms, as well as Privacy-aware Tree (PAT), an especially effective vDM algorithm that outperforms all baselines across several settings. We plan to release our code as a publicly available library, helping advance the standardization of DM for machine learning. Overall, we believe our work can help lay the foundation for further exploration and adoption of DM principles in real-world applications.
Abstract:Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to $85\%$ top-1 and $95.8\%$ top-3 accuracy at a fraction of the cost ($100\times$) and time ($240\times$) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.
Abstract:Large amounts of tabular data remain underutilized due to privacy, data quality, and data sharing limitations. While training a generative model producing synthetic data resembling the original distribution addresses some of these issues, most applications require additional constraints from the generated data. Existing synthetic data approaches are limited as they typically only handle specific constraints, e.g., differential privacy (DP) or increased fairness, and lack an accessible interface for declaring general specifications. In this work, we introduce ProgSyn, the first programmable synthetic tabular data generation algorithm that allows for comprehensive customization over the generated data. To ensure high data quality while adhering to custom specifications, ProgSyn pre-trains a generative model on the original dataset and fine-tunes it on a differentiable loss automatically derived from the provided specifications. These can be programmatically declared using statistical and logical expressions, supporting a wide range of requirements (e.g., DP or fairness, among others). We conduct an extensive experimental evaluation of ProgSyn on a number of constraints, achieving a new state-of-the-art on some, while remaining general. For instance, at the same fairness level we achieve 2.3% higher downstream accuracy than the state-of-the-art in fair synthetic data generation on the Adult dataset. Overall, ProgSyn provides a versatile and accessible framework for generating constrained synthetic tabular data, allowing for specifications that generalize beyond the capabilities of prior work.
Abstract:Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. However, recent work has shown that prior methods achieve worse accuracy-fairness tradeoffs than originally suggested by their results. This dictates the need for FRL methods that provide provable upper bounds on unfairness of any downstream classifier, a challenge yet unsolved. In this work we address this challenge and propose Fairness with Restricted Encoders (FARE), the first FRL method with provable fairness guarantees. Our key insight is that restricting the representation space of the encoder enables us to derive suitable fairness guarantees, while allowing empirical accuracy-fairness tradeoffs comparable to prior work. FARE instantiates this idea with a tree-based encoder, a choice motivated by inherent advantages of decision trees when applied in our setting. Crucially, we develop and apply a practical statistical procedure that computes a high-confidence upper bound on the unfairness of any downstream classifier. In our experimental evaluation on several datasets and settings we demonstrate that FARE produces tight upper bounds, often comparable with empirical results of prior methods, which establishes the practical value of our approach.
Abstract:While federated learning (FL) promises to preserve privacy in distributed training of deep learning models, recent work in the image and NLP domains showed that training updates leak private data of participating clients. At the same time, most high-stakes applications of FL (e.g., legal and financial) use tabular data. Compared to the NLP and image domains, reconstruction of tabular data poses several unique challenges: (i) categorical features introduce a significantly more difficult mixed discrete-continuous optimization problem, (ii) the mix of categorical and continuous features causes high variance in the final reconstructions, and (iii) structured data makes it difficult for the adversary to judge reconstruction quality. In this work, we tackle these challenges and propose the first comprehensive reconstruction attack on tabular data, called TabLeak. TabLeak is based on three key ingredients: (i) a softmax structural prior, implicitly converting the mixed discrete-continuous optimization problem into an easier fully continuous one, (ii) a way to reduce the variance of our reconstructions through a pooled ensembling scheme exploiting the structure of tabular data, and (iii) an entropy measure which can successfully assess reconstruction quality. Our experimental evaluation demonstrates the effectiveness of TabLeak, reaching a state-of-the-art on four popular tabular datasets. For instance, on the Adult dataset, we improve attack accuracy by 10% compared to the baseline on the practically relevant batch size of 32 and further obtain non-trivial reconstructions for batch sizes as large as 128. Our findings are important as they show that performing FL on tabular data, which often poses high privacy risks, is highly vulnerable.
Abstract:Recent attacks have shown that user data can be recovered from FedSGD updates, thus breaking privacy. However, these attacks are of limited practical relevance as federated learning typically uses the FedAvg algorithm. Compared to FedSGD, recovering data from FedAvg updates is much harder as: (i) the updates are computed at unobserved intermediate network weights, (ii) a large number of batches are used, and (iii) labels and network weights vary simultaneously across client steps. In this work, we propose a new optimization-based attack which successfully attacks FedAvg by addressing the above challenges. First, we solve the optimization problem using automatic differentiation that forces a simulation of the client's update that generates the unobserved parameters for the recovered labels and inputs to match the received client update. Second, we address the large number of batches by relating images from different epochs with a permutation invariant prior. Third, we recover the labels by estimating the parameters of existing FedSGD attacks at every FedAvg step. On the popular FEMNIST dataset, we demonstrate that on average we successfully recover >45% of the client's images from realistic FedAvg updates computed on 10 local epochs of 10 batches each with 5 images, compared to only <10% using the baseline. Our findings show many real-world federated learning implementations based on FedAvg are vulnerable.
Abstract:Recent work shows that sensitive user data can be reconstructed from gradient updates, breaking the key privacy promise of federated learning. While success was demonstrated primarily on image data, these methods do not directly transfer to other domains such as text. In this work, we propose LAMP, a novel attack tailored to textual data, that successfully reconstructs original text from gradients. Our key insight is to model the prior probability of the text with an auxiliary language model, utilizing it to guide the search towards more natural text. Concretely, LAMP introduces a discrete text transformation procedure that minimizes both the reconstruction loss and the prior text probability, as provided by the auxiliary language model. The procedure is alternated with a continuous optimization of the reconstruction loss, which also regularizes the length of the reconstructed embeddings. Our experiments demonstrate that LAMP reconstructs the original text significantly more precisely than prior work: we recover 5x more bigrams and $23\%$ longer subsequences on average. Moreover, we are first to recover inputs from batch sizes larger than 1 for textual models. These findings indicate that gradient updates of models operating on textual data leak more information than previously thought.