Abstract:It is well-known that Federated Learning (FL) is vulnerable to manipulated updates from clients. In this work we study the impact of data heterogeneity on clients' incentives to manipulate their updates. We formulate a game in which clients may upscale their gradient updates in order to ``steer'' the server model to their advantage. We develop a payment rule that disincentivizes sending large gradient updates, and steers the clients towards truthfully reporting their gradients. We also derive explicit bounds on the clients' payments and the convergence rate of the global model, which allows us to study the trade-off between heterogeneity, payments and convergence.
Abstract:The EU's Artificial Intelligence Act (AI Act) is a significant step towards responsible AI development, but lacks clear technical interpretation, making it difficult to assess models' compliance. This work presents COMPL-AI, a comprehensive framework consisting of (i) the first technical interpretation of the EU AI Act, translating its broad regulatory requirements into measurable technical requirements, with the focus on large language models (LLMs), and (ii) an open-source Act-centered benchmarking suite, based on thorough surveying and implementation of state-of-the-art LLM benchmarks. By evaluating 12 prominent LLMs in the context of COMPL-AI, we reveal shortcomings in existing models and benchmarks, particularly in areas like robustness, safety, diversity, and fairness. This work highlights the need for a shift in focus towards these aspects, encouraging balanced development of LLMs and more comprehensive regulation-aligned benchmarks. Simultaneously, COMPL-AI for the first time demonstrates the possibilities and difficulties of bringing the Act's obligations to a more concrete, technical level. As such, our work can serve as a useful first step towards having actionable recommendations for model providers, and contributes to ongoing efforts of the EU to enable application of the Act, such as the drafting of the GPAI Code of Practice.
Abstract:Simplicity bias, the propensity of deep models to over-rely on simple features, has been identified as a potential reason for limited out-of-distribution generalization of neural networks (Shah et al., 2020). Despite the important implications, this phenomenon has been theoretically confirmed and characterized only under strong dataset assumptions, such as linear separability (Lyu et al., 2021). In this work, we characterize simplicity bias for general datasets in the context of two-layer neural networks initialized with small weights and trained with gradient flow. Specifically, we prove that in the early training phases, network features cluster around a few directions that do not depend on the size of the hidden layer. Furthermore, for datasets with an XOR-like pattern, we precisely identify the learned features and demonstrate that simplicity bias intensifies during later training stages. These results indicate that features learned in the middle stages of training may be more useful for OOD transfer. We support this hypothesis with experiments on image data.
Abstract:Cross-silo federated learning (FL) allows data owners to train accurate machine learning models by benefiting from each others private datasets. Unfortunately, the model accuracy benefits of collaboration are often undermined by privacy defenses. Therefore, to incentivize client participation in privacy-sensitive domains, a FL protocol should strike a delicate balance between privacy guarantees and end-model accuracy. In this paper, we study the question of when and how a server could design a FL protocol provably beneficial for all participants. First, we provide necessary and sufficient conditions for the existence of mutually beneficial protocols in the context of mean estimation and convex stochastic optimization. We also derive protocols that maximize the total clients' utility, given symmetric privacy preferences. Finally, we design protocols maximizing end-model accuracy and demonstrate their benefits in synthetic experiments.
Abstract:Collaborative learning techniques have the potential to enable training machine learning models that are superior to models trained on a single entity's data. However, in many cases, potential participants in such collaborative schemes are competitors on a downstream task, such as firms that each aim to attract customers by providing the best recommendations. This can incentivize dishonest updates that damage other participants' models, potentially undermining the benefits of collaboration. In this work, we formulate a game that models such interactions and study two learning tasks within this framework: single-round mean estimation and multi-round SGD on strongly-convex objectives. For a natural class of player actions, we show that rational clients are incentivized to strongly manipulate their updates, preventing learning. We then propose mechanisms that incentivize honest communication and ensure learning quality comparable to full cooperation. Lastly, we empirically demonstrate the effectiveness of our incentive scheme on a standard non-convex federated learning benchmark. Our work shows that explicitly modeling the incentives and actions of dishonest clients, rather than assuming them malicious, can enable strong robustness guarantees for collaborative learning.
Abstract:Collaborative learning techniques have significantly advanced in recent years, enabling private model training across multiple organizations. Despite this opportunity, firms face a dilemma when considering data sharing with competitors -- while collaboration can improve a company's machine learning model, it may also benefit competitors and hence reduce profits. In this work, we introduce a general framework for analyzing this data-sharing trade-off. The framework consists of three components, representing the firms' production decisions, the effect of additional data on model quality, and the data-sharing negotiation process, respectively. We then study an instantiation of the framework, based on a conventional market model from economic theory, to identify key factors that affect collaboration incentives. Our findings indicate a profound impact of market conditions on the data-sharing incentives. In particular, we find that reduced competition, in terms of the similarities between the firms' products, and harder learning tasks foster collaboration.
Abstract:Text classifiers have promising applications in high-stake tasks such as resume screening and content moderation. These classifiers must be fair and avoid discriminatory decisions by being invariant to perturbations of sensitive attributes such as gender or ethnicity. However, there is a gap between human intuition about these perturbations and the formal similarity specifications capturing them. While existing research has started to address this gap, current methods are based on hardcoded word replacements, resulting in specifications with limited expressivity or ones that fail to fully align with human intuition (e.g., in cases of asymmetric counterfactuals). This work proposes novel methods for bridging this gap by discovering expressive and intuitive individual fairness specifications. We show how to leverage unsupervised style transfer and GPT-3's zero-shot capabilities to automatically generate expressive candidate pairs of semantically similar sentences that differ along sensitive attributes. We then validate the generated pairs via an extensive crowdsourcing study, which confirms that a lot of these pairs align with human intuition about fairness in the context of toxicity classification. Finally, we show how limited amounts of human feedback can be leveraged to learn a similarity specification that can be used to train downstream fairness-aware models.
Abstract:Recent attacks have shown that user data can be recovered from FedSGD updates, thus breaking privacy. However, these attacks are of limited practical relevance as federated learning typically uses the FedAvg algorithm. Compared to FedSGD, recovering data from FedAvg updates is much harder as: (i) the updates are computed at unobserved intermediate network weights, (ii) a large number of batches are used, and (iii) labels and network weights vary simultaneously across client steps. In this work, we propose a new optimization-based attack which successfully attacks FedAvg by addressing the above challenges. First, we solve the optimization problem using automatic differentiation that forces a simulation of the client's update that generates the unobserved parameters for the recovered labels and inputs to match the received client update. Second, we address the large number of batches by relating images from different epochs with a permutation invariant prior. Third, we recover the labels by estimating the parameters of existing FedSGD attacks at every FedAvg step. On the popular FEMNIST dataset, we demonstrate that on average we successfully recover >45% of the client's images from realistic FedAvg updates computed on 10 local epochs of 10 batches each with 5 images, compared to only <10% using the baseline. Our findings show many real-world federated learning implementations based on FedAvg are vulnerable.
Abstract:Fairness-aware learning aims at constructing classifiers that not only make accurate predictions, but do not discriminate against specific groups. It is a fast-growing area of machine learning with far-reaching societal impact. However, existing fair learning methods are vulnerable to accidental or malicious artifacts in the training data, which can cause them to unknowingly produce unfair classifiers. In this work we address the problem of fair learning from unreliable training data in the robust multisource setting, where the available training data comes from multiple sources, a fraction of which might be not representative of the true data distribution. We introduce FLEA, a filtering-based algorithm that allows the learning system to identify and suppress those data sources that would have a negative impact on fairness or accuracy if they were used for training. We show the effectiveness of our approach by a diverse range of experiments on multiple datasets. Additionally we prove formally that, given enough data, FLEA protects the learner against unreliable data as long as the fraction of affected data sources is less than half.
Abstract:Addressing fairness concerns about machine learning models is a crucial step towards their long-term adoption in real-world automated systems. While many approaches have been developed for training fair models from data, little is known about the effects of data corruption on these methods. In this work we consider fairness-aware learning under arbitrary data manipulations. We show that an adversary can force any learner to return a biased classifier, with or without degrading accuracy, and that the strength of this bias increases for learning problems with underrepresented protected groups in the data. We also provide upper bounds that match these hardness results up to constant factors, by proving that two natural learning algorithms achieve order-optimal guarantees in terms of both accuracy and fairness under adversarial data manipulations.