Abstract:Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, o3-mini, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly, achieving less than 5% on average. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
Abstract:It is well-known that Federated Learning (FL) is vulnerable to manipulated updates from clients. In this work we study the impact of data heterogeneity on clients' incentives to manipulate their updates. We formulate a game in which clients may upscale their gradient updates in order to ``steer'' the server model to their advantage. We develop a payment rule that disincentivizes sending large gradient updates, and steers the clients towards truthfully reporting their gradients. We also derive explicit bounds on the clients' payments and the convergence rate of the global model, which allows us to study the trade-off between heterogeneity, payments and convergence.