Large Language Model (LLM) Agents leverage the advanced reasoning capabilities of LLMs in real-world applications. To interface with an environment, these agents often rely on tools, such as web search or database APIs. As the agent provides the LLM with tool documentation along the user query, the completeness and correctness of this documentation is critical. However, tool documentation is often over-, under-, or ill-specified, impeding the agent's accuracy. Standard software testing approaches struggle to identify these errors as they are expressed in natural language. Thus, despite its importance, there currently exists no automated method to test the tool documentation for agents. To address this issue, we present ToolFuzz, the first method for automated testing of tool documentations. ToolFuzz is designed to discover two types of errors: (1) user queries leading to tool runtime errors and (2) user queries that lead to incorrect agent responses. ToolFuzz can generate a large and diverse set of natural inputs, effectively finding tool description errors at a low false positive rate. Further, we present two straightforward prompt-engineering approaches. We evaluate all three tool testing approaches on 32 common LangChain tools and 35 newly created custom tools and 2 novel benchmarks to further strengthen the assessment. We find that many publicly available tools suffer from underspecification. Specifically, we show that ToolFuzz identifies 20x more erroneous inputs compared to the prompt-engineering approaches, making it a key component for building reliable AI agents.