Abstract:AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.
Abstract:We show that for a variety of concepts in adapter-based vision-language models, the representations of their images and their text descriptions are meaningfully aligned from the very first layer. This contradicts the established view that such image-text alignment only appears in late layers. We show this using a new synthesis-based method inspired by DeepDream: given a textual concept such as "Jupiter", we extract its concept vector at a given layer, and then use optimisation to synthesise an image whose representation aligns with that vector. We apply our approach to hundreds of concepts across seven layers in Gemma 3, and find that the synthesised images often depict salient visual features of the targeted textual concepts: for example, already at layer 1, more than 50 % of images depict recognisable features of animals, activities, or seasons. Our method thus provides direct, constructive evidence of image-text alignment on a concept-by-concept and layer-by-layer basis. Unlike previous methods for measuring multimodal alignment, our approach is simple, fast, and does not require auxiliary models or datasets. It also offers a new path towards model interpretability, by providing a way to visualise a model's representation space by backtracing through its image processing components.




Abstract:We present Apertus, a fully open suite of large language models (LLMs) designed to address two systemic shortcomings in today's open model ecosystem: data compliance and multilingual representation. Unlike many prior models that release weights without reproducible data pipelines or regard for content-owner rights, Apertus models are pretrained exclusively on openly available data, retroactively respecting robots.txt exclusions and filtering for non-permissive, toxic, and personally identifiable content. To mitigate risks of memorization, we adopt the Goldfish objective during pretraining, strongly suppressing verbatim recall of data while retaining downstream task performance. The Apertus models also expand multilingual coverage, training on 15T tokens from over 1800 languages, with ~40% of pretraining data allocated to non-English content. Released at 8B and 70B scales, Apertus approaches state-of-the-art results among fully open models on multilingual benchmarks, rivalling or surpassing open-weight counterparts. Beyond model weights, we release all scientific artifacts from our development cycle with a permissive license, including data preparation scripts, checkpoints, evaluation suites, and training code, enabling transparent audit and extension.




Abstract:As AI agents powered by Large Language Models (LLMs) become increasingly versatile and capable of addressing a broad spectrum of tasks, ensuring their security has become a critical challenge. Among the most pressing threats are prompt injection attacks, which exploit the agent's resilience on natural language inputs -- an especially dangerous threat when agents are granted tool access or handle sensitive information. In this work, we propose a set of principled design patterns for building AI agents with provable resistance to prompt injection. We systematically analyze these patterns, discuss their trade-offs in terms of utility and security, and illustrate their real-world applicability through a series of case studies.
Abstract:Sequence models, such as Large Language Models (LLMs) and autoregressive image generators, have a tendency to memorize and inadvertently leak sensitive information. While this tendency has critical legal implications, existing tools are insufficient to audit the resulting risks. We hypothesize that those tools' shortcomings are due to mismatched assumptions. Thus, we argue that effectively measuring privacy leakage in sequence models requires leveraging the correlations inherent in sequential generation. To illustrate this, we adapt a state-of-the-art membership inference attack to explicitly model within-sequence correlations, thereby demonstrating how a strong existing attack can be naturally extended to suit the structure of sequence models. Through a case study, we show that our adaptations consistently improve the effectiveness of memorization audits without introducing additional computational costs. Our work hence serves as an important stepping stone toward reliable memorization audits for large sequence models.
Abstract:Existing benchmarks for evaluating mathematical reasoning in large language models (LLMs) rely primarily on competition problems, formal proofs, or artificially challenging questions -- failing to capture the nature of mathematics encountered in actual research environments. We introduce RealMath, a novel benchmark derived directly from research papers and mathematical forums that assesses LLMs' abilities on authentic mathematical tasks. Our approach addresses three critical challenges: sourcing diverse research-level content, enabling reliable automated evaluation through verifiable statements, and designing a continually refreshable dataset to mitigate contamination risks. Experimental results across multiple LLMs reveal surprising capabilities in handling research mathematics compared to competition problems, suggesting current models may already serve as valuable assistants for working mathematicians despite limitations on highly challenging problems. The code and dataset for RealMath are publicly available.




Abstract:We argue that Large language models (LLMs) will soon alter the economics of cyberattacks. Instead of attacking the most commonly used software and monetizing exploits by targeting the lowest common denominator among victims, LLMs enable adversaries to launch tailored attacks on a user-by-user basis. On the exploitation front, instead of human attackers manually searching for one difficult-to-identify bug in a product with millions of users, LLMs can find thousands of easy-to-identify bugs in products with thousands of users. And on the monetization front, instead of generic ransomware that always performs the same attack (encrypt all your data and request payment to decrypt), an LLM-driven ransomware attack could tailor the ransom demand based on the particular content of each exploited device. We show that these two attacks (and several others) are imminently practical using state-of-the-art LLMs. For example, we show that without any human intervention, an LLM finds highly sensitive personal information in the Enron email dataset (e.g., an executive having an affair with another employee) that could be used for blackmail. While some of our attacks are still too expensive to scale widely today, the incentives to implement these attacks will only increase as LLMs get cheaper. Thus, we argue that LLMs create a need for new defense-in-depth approaches.




Abstract:Jailbreak attacks bypass the guardrails of large language models to produce harmful outputs. In this paper, we ask whether the model outputs produced by existing jailbreaks are actually useful. For example, when jailbreaking a model to give instructions for building a bomb, does the jailbreak yield good instructions? Since the utility of most unsafe answers (e.g., bomb instructions) is hard to evaluate rigorously, we build new jailbreak evaluation sets with known ground truth answers, by aligning models to refuse questions related to benign and easy-to-evaluate topics (e.g., biology or math). Our evaluation of eight representative jailbreaks across five utility benchmarks reveals a consistent drop in model utility in jailbroken responses, which we term the jailbreak tax. For example, while all jailbreaks we tested bypass guardrails in models aligned to refuse to answer math, this comes at the expense of a drop of up to 92% in accuracy. Overall, our work proposes the jailbreak tax as a new important metric in AI safety, and introduces benchmarks to evaluate existing and future jailbreaks. We make the benchmark available at https://github.com/ethz-spylab/jailbreak-tax
Abstract:Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an external environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models may be susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL relies on a notion of a capability to prevent the exfiltration of private data over unauthorized data flows. We demonstrate effectiveness of CaMeL by solving $67\%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.




Abstract:We introduce AutoAdvExBench, a benchmark to evaluate if large language models (LLMs) can autonomously exploit defenses to adversarial examples. Unlike existing security benchmarks that often serve as proxies for real-world tasks, bench directly measures LLMs' success on tasks regularly performed by machine learning security experts. This approach offers a significant advantage: if a LLM could solve the challenges presented in bench, it would immediately present practical utility for adversarial machine learning researchers. We then design a strong agent that is capable of breaking 75% of CTF-like ("homework exercise") adversarial example defenses. However, we show that this agent is only able to succeed on 13% of the real-world defenses in our benchmark, indicating the large gap between difficulty in attacking "real" code, and CTF-like code. In contrast, a stronger LLM that can attack 21% of real defenses only succeeds on 54% of CTF-like defenses. We make this benchmark available at https://github.com/ethz-spylab/AutoAdvExBench.