Dj
Abstract:We articulate fundamental mismatches between technical methods for machine unlearning in Generative AI, and documented aspirations for broader impact that these methods could have for law and policy. These aspirations are both numerous and varied, motivated by issues that pertain to privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model's parameters, e.g., a particular individual's personal data or in-copyright expression of Spiderman that was included in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for thinking rigorously about these challenges, which enables us to be clear about why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact. We aim for conceptual clarity and to encourage more thoughtful communication among machine learning (ML), law, and policy experts who seek to develop and apply technical methods for compliance with policy objectives.
Abstract:Differentially Private Stochastic Gradient Descent (DP-SGD) is a popular method for training machine learning models with formal Differential Privacy (DP) guarantees. As DP-SGD processes the training data in batches, it uses Poisson sub-sampling to select batches at each step. However, due to computational and compatibility benefits, replacing sub-sampling with shuffling has become common practice. Yet, since tight theoretical guarantees for shuffling are currently unknown, prior work using shuffling reports DP guarantees as though Poisson sub-sampling was used. This prompts the need to verify whether this discrepancy is reflected in a gap between the theoretical guarantees from state-of-the-art models and the actual privacy leakage. To do so, we introduce a novel DP auditing procedure to analyze DP-SGD with shuffling. We show that state-of-the-art DP models trained with shuffling appreciably overestimated privacy guarantees (up to 4x). In the process, we assess the impact of several parameters, such as batch size, privacy budget, and threat model, on privacy leakage. Finally, we study two variations of the shuffling procedure found in the wild, which result in further privacy leakage. Overall, our work empirically attests to the risk of using shuffling instead of Poisson sub-sampling vis-\`a-vis the actual privacy leakage of DP-SGD.
Abstract:Mixture-of-Experts (MoE) models improve the efficiency and scalability of dense language models by routing each token to a small number of experts in each layer. In this paper, we show how an adversary that can arrange for their queries to appear in the same batch of examples as a victim's queries can exploit Expert-Choice-Routing to fully disclose a victim's prompt. We successfully demonstrate the effectiveness of this attack on a two-layer Mixtral model, exploiting the tie-handling behavior of the torch.topk CUDA implementation. Our results show that we can extract the entire prompt using $O({VM}^2)$ queries (with vocabulary size $V$ and prompt length $M$) or 100 queries on average per token in the setting we consider. This is the first attack to exploit architectural flaws for the purpose of extracting user prompts, introducing a new class of LLM vulnerabilities.
Abstract:Large language models (LLMs) are susceptible to memorizing training data, raising concerns due to the potential extraction of sensitive information. Current methods to measure memorization rates of LLMs, primarily discoverable extraction (Carlini et al., 2022), rely on single-sequence greedy sampling, potentially underestimating the true extent of memorization. This paper introduces a probabilistic relaxation of discoverable extraction that quantifies the probability of extracting a target sequence within a set of generated samples, considering various sampling schemes and multiple attempts. This approach addresses the limitations of reporting memorization rates through discoverable extraction by accounting for the probabilistic nature of LLMs and user interaction patterns. Our experiments demonstrate that this probabilistic measure can reveal cases of higher memorization rates compared to rates found through discoverable extraction. We further investigate the impact of different sampling schemes on extractability, providing a more comprehensive and realistic assessment of LLM memorization and its associated risks. Our contributions include a new probabilistic memorization definition, empirical evidence of its effectiveness, and a thorough evaluation across different models, sizes, sampling schemes, and training data repetitions.
Abstract:We propose a simple heuristic privacy analysis of noisy clipped stochastic gradient descent (DP-SGD) in the setting where only the last iterate is released and the intermediate iterates remain hidden. Namely, our heuristic assumes a linear structure for the model. We show experimentally that our heuristic is predictive of the outcome of privacy auditing applied to various training procedures. Thus it can be used prior to training as a rough estimate of the final privacy leakage. We also probe the limitations of our heuristic by providing some artificial counterexamples where it underestimates the privacy leakage. The standard composition-based privacy analysis of DP-SGD effectively assumes that the adversary has access to all intermediate iterates, which is often unrealistic. However, this analysis remains the state of the art in practice. While our heuristic does not replace a rigorous privacy analysis, it illustrates the large gap between the best theoretical upper bounds and the privacy auditing lower bounds and sets a target for further work to improve the theoretical privacy analyses. We also empirically support our heuristic and show existing privacy auditing attacks are bounded by our heuristic analysis in both vision and language tasks.
Abstract:We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. In addition, we discuss issues around safety and representation, as well as methods we used to minimize the potential harm of our models.
Abstract:Exact unlearning was first introduced as a privacy mechanism that allowed a user to retract their data from machine learning models on request. Shortly after, inexact schemes were proposed to mitigate the impractical costs associated with exact unlearning. More recently unlearning is often discussed as an approach for removal of impermissible knowledge i.e. knowledge that the model should not possess such as unlicensed copyrighted, inaccurate, or malicious information. The promise is that if the model does not have a certain malicious capability, then it cannot be used for the associated malicious purpose. In this paper we revisit the paradigm in which unlearning is used for in Large Language Models (LLMs) and highlight an underlying inconsistency arising from in-context learning. Unlearning can be an effective control mechanism for the training phase, yet it does not prevent the model from performing an impermissible act during inference. We introduce a concept of ununlearning, where unlearned knowledge gets reintroduced in-context, effectively rendering the model capable of behaving as if it knows the forgotten knowledge. As a result, we argue that content filtering for impermissible knowledge will be required and even exact unlearning schemes are not enough for effective content regulation. We discuss feasibility of ununlearning for modern LLMs and examine broader implications.
Abstract:Reinforcement learning with human feedback (RLHF) has become the dominant method to align large models to user preferences. Unlike fine-tuning, for which there are many studies regarding training data memorization, it is not clear how memorization is affected by or introduced in the RLHF alignment process. Understanding this relationship is important as real user data may be collected and used to align large models; if user data is memorized during RLHF and later regurgitated, this could raise privacy concerns. In this work, we analyze how training data memorization can surface and propagate through each phase of RLHF. We focus our study on code completion models, as code completion is one of the most popular use cases for large language models. We find that RLHF significantly decreases the chance that data used for reward modeling and reinforcement learning is memorized, in comparison to aligning via directly fine-tuning on this data, but that examples already memorized during the fine-tuning stage of RLHF, will, in the majority of cases, remain memorized after RLHF.
Abstract:Deep neural networks, costly to train and rich in intellectual property value, are increasingly threatened by model extraction attacks that compromise their confidentiality. Previous attacks have succeeded in reverse-engineering model parameters up to a precision of float64 for models trained on random data with at most three hidden layers using cryptanalytical techniques. However, the process was identified to be very time consuming and not feasible for larger and deeper models trained on standard benchmarks. Our study evaluates the feasibility of parameter extraction methods of Carlini et al. [1] further enhanced by Canales-Mart\'inez et al. [2] for models trained on standard benchmarks. We introduce a unified codebase that integrates previous methods and reveal that computational tools can significantly influence performance. We develop further optimisations to the end-to-end attack and improve the efficiency of extracting weight signs by up to 14.8 times compared to former methods through the identification of easier and harder to extract neurons. Contrary to prior assumptions, we identify extraction of weights, not extraction of weight signs, as the critical bottleneck. With our improvements, a 16,721 parameter model with 2 hidden layers trained on MNIST is extracted within only 98 minutes compared to at least 150 minutes previously. Finally, addressing methodological deficiencies observed in previous studies, we propose new ways of robust benchmarking for future model extraction attacks.
Abstract:We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and initiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.