Abstract:To improve user experience and profits of corporations, modern industrial recommender systems usually aim to select the items that are most likely to be interacted with (e.g., clicks and purchases). However, they overlook the fact that users may purchase the items even without recommendations. To select these effective items, it is essential to estimate the causal effect of recommendations. The real effective items are the ones which can contribute to purchase probability uplift. Nevertheless, it is difficult to obtain the real causal effect since we can only recommend or not recommend an item to a user at one time. Furthermore, previous works usually rely on the randomized controlled trial~(RCT) experiment to evaluate their performance. However, it is usually not practicable in the recommendation scenario due to its unavailable time consuming. To tackle these problems, in this paper, we propose a causal collaborative filtering~(CausCF) method inspired by the widely adopted collaborative filtering~(CF) technique. It is based on the idea that similar users not only have a similar taste on items, but also have similar treatment effect under recommendations. CausCF extends the classical matrix factorization to the tensor factorization with three dimensions -- user, item, and treatment. Furthermore, we also employs regression discontinuity design (RDD) to evaluate the precision of the estimated causal effects from different models. With the testable assumptions, RDD analysis can provide an unbiased causal conclusion without RCT experiments. Through dedicated experiments on both the public datasets and the industrial application, we demonstrate the effectiveness of our proposed CausCF on the causal effect estimation and ranking performance improvement.
Abstract:With the explosive growth of online information, recommender systems play a key role to alleviate such information overload. Due to the important application value of recommender system, there have always been emerging works in this field. In recent years, graph neural network (GNN) techniques have gained considerable interests which can naturally integrate node information and topological structure. Owing to the outperformance of GNN in learning on graph data, GNN methods have been widely applied in many fields. In recommender systems, the main challenge is to learn the efficient user/item embeddings from their interactions and side information if available. Since most of the information essentially has graph structure and GNNs have superiority in representation learning, the field of utilizing graph neural network in recommender systems is flourishing. This article aims to provide a comprehensive review of recent research efforts on graph neural network based recommender systems. Specifically, we provide a taxonomy of graph neural network based recommendation models and state new perspectives pertaining to the development of this field.