Abstract:While reasoning capabilities typically emerge in large language models (LLMs) with tens of billions of parameters, recent research focuses on improving smaller open-source models through knowledge distillation (KD) from commercial LLMs. However, many of these studies rely solely on responses from a single LLM as the gold rationale, unlike the natural human learning process, which involves understanding both the correct answers and the reasons behind mistakes. In this paper, we introduce a novel Fault-Aware Distillation via Peer-Review (FAIR) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.
Abstract:Recent advancements in large language models have demonstrated their potential in numerous medical applications, particularly in automating clinical trial matching for translational research and enhancing medical question answering for clinical decision support. However, our study shows that incorporating non decisive sociodemographic factors such as race, sex, income level, LGBT+ status, homelessness, illiteracy, disability, and unemployment into the input of LLMs can lead to incorrect and harmful outputs for these populations. These discrepancies risk exacerbating existing health disparities if LLMs are widely adopted in healthcare. To address this issue, we introduce EquityGuard, a novel framework designed to detect and mitigate the risk of health inequities in LLM based medical applications. Our evaluation demonstrates its efficacy in promoting equitable outcomes across diverse populations.
Abstract:Reranking documents based on their relevance to a given query is critical in information retrieval. Traditional reranking methods often focus on improving the initial rankings but lack transparency, failing to explain why one document is ranked higher. In this paper, we introduce ReasoningRank, a novel reranking approach that enhances clarity by generating two types of reasoning: explicit reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another. We leverage large language models (LLMs) as teacher models to generate these explanations and distill this knowledge into smaller, more resource-efficient student models. While the student models may not outperform LLMs in speed, they significantly reduce the computational burden by requiring fewer resources, making them more suitable for large-scale or resource-constrained settings. These student models are trained to both generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets, including MSMARCO and BRIGHT. Experiments demonstrate that ReasoningRank improves reranking accuracy and provides valuable insights into the decision-making process, offering a structured and interpretable solution for reranking tasks.
Abstract:Recent advancements have highlighted the potential of large language models (LLMs) in medical applications, notably in automating Clinical Trial Matching for translational research and providing medical question-answering for clinical decision support. However, our study reveals significant inequities in the use of LLMs, particularly for individuals from specific racial, gender, and underrepresented groups influenced by social determinants of health. These disparities could worsen existing health inequities if LLMs are broadly adopted in healthcare. To address this, we propose and evaluate a novel framework, EquityGuard, designed to detect and mitigate biases in LLM-based medical applications. EquityGuard incorporates a Bias Detection Mechanism capable of identifying and correcting unfair predictions, thus enhancing outcomes and promoting equity across diverse population groups.
Abstract:Large language models (LLMs) have exhibited complex reasoning abilities by generating question rationales and demonstrated exceptional performance in natural language processing (NLP) tasks. However, these reasoning capabilities generally emerge in models with tens of billions of parameters, creating significant computational challenges for real-world deployment. Recent research has concentrated on improving open-source smaller models through knowledge distillation (KD) from commercial LLMs. Nevertheless, most of these studies rely solely on the responses from one single LLM as the gold rationale for training. In this paper, we introduce a novel Mistake-Aware Peer-Review Distillation (MAPD) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.
Abstract:This paper introduces the RAG-RLRC-LaySum framework, designed to make complex biomedical research understandable to laymen through advanced Natural Language Processing (NLP) techniques. Our Retrieval Augmented Generation (RAG) solution, enhanced by a reranking method, utilizes multiple knowledge sources to ensure the precision and pertinence of lay summaries. Additionally, our Reinforcement Learning for Readability Control (RLRC) strategy improves readability, making scientific content comprehensible to non-specialists. Evaluations using the publicly accessible PLOS and eLife datasets show that our methods surpass Plain Gemini model, demonstrating a 20% increase in readability scores, a 15% improvement in ROUGE-2 relevance scores, and a 10% enhancement in factual accuracy. The RAG-RLRC-LaySum framework effectively democratizes scientific knowledge, enhancing public engagement with biomedical discoveries.
Abstract:Evidence suggests that different prompts lead large language models (LLMs) to generate responses with varying quality. Yet, little is known about prompts' effects on response quality in healthcare domains. In this exploratory study, we address this gap, focusing on a specific healthcare domain: dementia caregiving. We first developed an innovative prompt template with three components: (1) system prompts (SPs) featuring 4 different roles; (2) an initialization prompt; and (3) task prompts (TPs) specifying different levels of details, totaling 12 prompt combinations. Next, we selected 3 social media posts containing complicated, real-world questions about dementia caregivers' challenges in 3 areas: memory loss and confusion, aggression, and driving. We then entered these posts into GPT-4, with our 12 prompts, to generate 12 responses per post, totaling 36 responses. We compared the word count of the 36 responses to explore potential differences in response length. Two experienced dementia care clinicians on our team assessed the response quality using a rating scale with 5 quality indicators: factual, interpretation, application, synthesis, and comprehensiveness (scoring range: 0-5; higher scores indicate higher quality).