Abstract:Artificial intelligence (AI) is increasingly framed as a collaborative partner in creative activities, yet children's interactions with AI have largely been studied in AI-led instructional settings rather than co-creative collaboration. This leaves open questions about how children can meaningfully engage with AI through iterative co-creation. We present Tinker Tales, a tangible storytelling system designed with narrative and social-emotional scaffolding to support child-AI collaboration. The system combines a physical storytelling board, NFC-embedded toys representing story elements (e.g., characters, places, items, and emotions), and a mobile app that mediates child-AI interaction. Children shape and refine stories by placing and moving story elements and interacting with the AI through tangible and voice-based interaction. We conducted an exploratory user study with 10 children to examine how they interacted with Tinker Tales. Our findings show that children treated the AI as an attentive, responsive collaborator, while scaffolding supported coherent narrative refinement without diminishing children's agency.
Abstract:Large Language Models (LLMs) are expected to provide helpful and harmless responses, yet they often exhibit sycophancy--conforming to user beliefs regardless of factual accuracy or ethical soundness. Prior research on sycophancy has primarily focused on single-turn factual correctness, overlooking the dynamics of real-world interactions. In this work, we introduce SYCON Bench, a novel benchmark for evaluating sycophantic behavior in multi-turn, free-form conversational settings. Our benchmark measures how quickly a model conforms to the user (Turn of Flip) and how frequently it shifts its stance under sustained user pressure (Number of Flip). Applying SYCON Bench to 17 LLMs across three real-world scenarios, we find that sycophancy remains a prevalent failure mode. Our analysis shows that alignment tuning amplifies sycophantic behavior, whereas model scaling and reasoning optimization strengthen the model's ability to resist undesirable user views. Reasoning models generally outperform instruction-tuned models but often fail when they over-index on logical exposition instead of directly addressing the user's underlying beliefs. Finally, we evaluate four additional prompting strategies and demonstrate that adopting a third-person perspective reduces sycophancy by up to 63.8% in debate scenario. We release our code and data at https://github.com/JiseungHong/SYCON-Bench.
Abstract:TL;DR Perform 3D object editing selectively by disentangling it from the background scene. Instruct-NeRF2NeRF (in2n) is a promising method that enables editing of 3D scenes composed of Neural Radiance Field (NeRF) using text prompts. However, it is challenging to perform geometrical modifications such as shrinking, scaling, or moving on both the background and object simultaneously. In this project, we enable geometrical changes of objects within the 3D scene by selectively editing the object after separating it from the scene. We perform object segmentation and background inpainting respectively, and demonstrate various examples of freely resizing or moving disentangled objects within the three-dimensional space.
Abstract:Named Entity Recognition (NER) plays a pivotal role in medical Natural Language Processing (NLP). Yet, there has not been an open-source medical NER dataset specifically for the Korean language. To address this, we utilized ChatGPT to assist in constructing the KBMC (Korean Bio-Medical Corpus), which we are now presenting to the public. With the KBMC dataset, we noticed an impressive 20% increase in medical NER performance compared to models trained on general Korean NER datasets. This research underscores the significant benefits and importance of using specialized tools and datasets, like ChatGPT, to enhance language processing in specialized fields such as healthcare.