Abstract:Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
Abstract:Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
Abstract:RAG has become a key technique for enhancing LLMs by reducing hallucinations, especially in domain expert systems where LLMs may lack sufficient inherent knowledge. However, developing these systems in low-resource settings introduces several challenges: (1) handling heterogeneous data sources, (2) optimizing retrieval phase for trustworthy answers, and (3) evaluating generated answers across diverse aspects. To address these, we introduce a data generation pipeline that transforms raw multi-modal data into structured corpus and Q&A pairs, an advanced re-ranking phase improving retrieval precision, and a reference matching algorithm enhancing answer traceability. Applied to the automotive engineering domain, our system improves factual correctness (+1.94), informativeness (+1.16), and helpfulness (+1.67) over a non-RAG baseline, based on a 1-5 scale by an LLM judge. These results highlight the effectiveness of our approach across distinct aspects, with strong answer grounding and transparency.