Abstract:Communicative efficiency is a prominent theory in linguistics and cognitive science. While numerous studies have shown how the pressure to save energy is reflected in the form of spoken languages, few have explored this phenomenon in signed languages. In this paper, we show how handshapes in American Sign Language (ASL) reflect these efficiency pressures and we present new evidence of communicative efficiency in the visual-gestural modality. We focus on handshapes that are used in both native ASL signs and signs borrowed from English to compare efficiency pressures from both ASL and English. First, we design new methodologies to quantify the articulatory effort required to produce handshapes as well as the perceptual effort needed to recognize them. Then, we compare correlations between communicative effort and usage statistics in ASL and English. Our findings reveal that frequent ASL handshapes are easier to produce and that pressures for communicative efficiency mostly come from ASL usage, not from English lexical borrowing.
Abstract:Model interpretability methods are often used to explain NLP model decisions on tasks such as text classification, where the output space is relatively small. However, when applied to language generation, where the output space often consists of tens of thousands of tokens, these methods are unable to provide informative explanations. Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics. Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding. To disentangle the different decisions in language modeling, we focus on explaining language models contrastively: we look for salient input tokens that explain why the model predicted one token instead of another. We demonstrate that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena, and that they significantly improve contrastive model simulatability for human observers. We also identify groups of contrastive decisions where the model uses similar evidence, and we are able to characterize what input tokens models use during various language generation decisions.
Abstract:Although proper handling of discourse phenomena significantly contributes to the quality of machine translation (MT), common translation quality metrics do not adequately capture them. Recent works in context-aware MT attempt to target a small set of these phenomena during evaluation. In this paper, we propose a new metric, P-CXMI, which allows us to identify translations that require context systematically and confirm the difficulty of previously studied phenomena as well as uncover new ones that have not been addressed in previous work. We then develop the Multilingual Discourse-Aware (MuDA) benchmark, a series of taggers for these phenomena in 14 different language pairs, which we use to evaluate context-aware MT. We find that state-of-the-art context-aware MT models find marginal improvements over context-agnostic models on our benchmark, which suggests current models do not handle these ambiguities effectively. We release code and data to invite the MT research community to increase efforts on context-aware translation on discourse phenomena and languages that are currently overlooked.
Abstract:Learning fine-grained distinctions between vocabulary items is a key challenge in learning a new language. For example, the noun "wall" has different lexical manifestations in Spanish -- "pared" refers to an indoor wall while "muro" refers to an outside wall. However, this variety of lexical distinction may not be obvious to non-native learners unless the distinction is explained in such a way. In this work, we present a method for automatically identifying fine-grained lexical distinctions, and extracting concise descriptions explaining these distinctions in a human- and machine-readable format. We confirm the quality of these extracted descriptions in a language learning setup for two languages, Spanish and Greek, where we use them to teach non-native speakers when to translate a given ambiguous word into its different possible translations. Code and data are publicly released here (https://github.com/Aditi138/LexSelection)
Abstract:Recent work in neural machine translation has demonstrated both the necessity and feasibility of using inter-sentential context -- context from sentences other than those currently being translated. However, while many current methods present model architectures that theoretically can use this extra context, it is often not clear how much they do actually utilize it at translation time. In this paper, we introduce a new metric, conditional cross-mutual information, to quantify the usage of context by these models. Using this metric, we measure how much document-level machine translation systems use particular varieties of context. We find that target context is referenced more than source context, and that conditioning on a longer context has a diminishing effect on results. We then introduce a new, simple training method, context-aware word dropout, to increase the usage of context by context-aware models. Experiments show that our method increases context usage and that this reflects on the translation quality according to metrics such as BLEU and COMET, as well as performance on anaphoric pronoun resolution and lexical cohesion contrastive datasets.
Abstract:Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context? What if we explicitly train them to do so? To answer these questions, we introduce SCAT (Supporting Context for Ambiguous Translations), a new English-French dataset comprising supporting context words for 14K translations that professional translators found useful for pronoun disambiguation. Using SCAT, we perform an in-depth analysis of the context used to disambiguate, examining positional and lexical characteristics of the supporting words. Furthermore, we measure the degree of alignment between the model's attention scores and the supporting context from SCAT, and apply a guided attention strategy to encourage agreement between the two.
Abstract:Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss-to-text translation, where a gloss is a sequence of transcribed spoken-language words in the order in which they are signed. We focus here on gloss-to-text translation, which we treat as a low-resource neural machine translation (NMT) problem. However, unlike traditional low-resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lexical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical overlap and handle syntactic divergence by proposing two rule-based heuristics that generate pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on the thus obtained synthetic data, we improve translation from American Sign Language (ASL) to English and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.
Abstract:Signed languages are the primary means of communication for many deaf and hard of hearing individuals. Since signed languages exhibit all the fundamental linguistic properties of natural language, we believe that tools and theories of Natural Language Processing (NLP) are crucial towards its modeling. However, existing research in Sign Language Processing (SLP) seldom attempt to explore and leverage the linguistic organization of signed languages. This position paper calls on the NLP community to include signed languages as a research area with high social and scientific impact. We first discuss the linguistic properties of signed languages to consider during their modeling. Then, we review the limitations of current SLP models and identify the open challenges to extend NLP to signed languages. Finally, we urge (1) the adoption of an efficient tokenization method; (2) the development of linguistically-informed models; (3) the collection of real-world signed language data; (4) the inclusion of local signed language communities as an active and leading voice in the direction of research.
Abstract:Sign Language Translation (SLT) first uses a Sign Language Recognition (SLR) system to extract sign language glosses from videos. Then, a translation system generates spoken language translations from the sign language glosses. Though SLT has gathered interest recently, little study has been performed on the translation system. This paper focuses on the translation system and improves performance by utilizing Transformer networks. We report a wide range of experimental results for various Transformer setups and introduce the use of Spatial-Temporal Multi-Cue (STMC) networks in an end-to-end SLT system with Transformer. We perform experiments on RWTH-PHOENIX-Weather 2014T, a challenging SLT benchmark dataset of German sign language, and ASLG-PC12, a dataset involving American Sign Language (ASL) recently used in gloss-to-text translation. Our methodology improves on the current state-of-the-art by over 5 and 7 points respectively in BLEU-4 score on ground truth glosses and by using an STMC network to predict glosses of the RWTH-PHOENIX-Weather 2014T dataset. On the ASLG-PC12 corpus, we report an improvement of over 16 points in BLEU-4. Our findings also demonstrate that end-to-end translation on predicted glosses provides even better performance than translation on ground truth glosses. This shows potential for further improvement in SLT by either jointly training the SLR and translation systems or by revising the gloss annotation system.