Abstract:Recent advances in generative AI have sparked renewed interest and expanded possibilities for music generation. However, the performance and versatility of these systems across musical genres are heavily influenced by the availability of training data. We conducted an extensive analysis of over one million hours of audio datasets used in AI music generation research and manually reviewed more than 200 papers from eleven prominent AI and music conferences and organizations (AAAI, ACM, EUSIPCO, EURASIP, ICASSP, ICML, IJCAI, ISMIR, NeurIPS, NIME, SMC) to identify a critical gap in the fair representation and inclusion of the musical genres of the Global South in AI research. Our findings reveal a stark imbalance: approximately 86% of the total dataset hours and over 93% of researchers focus primarily on music from the Global North. However, around 40% of these datasets include some form of non-Western music, genres from the Global South account for only 14.6% of the data. Furthermore, approximately 51% of the papers surveyed concentrate on symbolic music generation, a method that often fails to capture the cultural nuances inherent in music from regions such as South Asia, the Middle East, and Africa. As AI increasingly shapes the creation and dissemination of music, the significant underrepresentation of music genres in datasets and research presents a serious threat to global musical diversity. We also propose some important steps to mitigate these risks and foster a more inclusive future for AI-driven music generation.
Abstract:The transition to online examinations and assignments raises significant concerns about academic integrity. Traditional plagiarism detection systems often struggle to identify instances of intelligent cheating, particularly when students utilize advanced generative AI tools to craft their responses. This study proposes a keystroke dynamics-based method to differentiate between bona fide and assisted writing within academic contexts. To facilitate this, a dataset was developed to capture the keystroke patterns of individuals engaged in writing tasks, both with and without the assistance of generative AI. The detector, trained using a modified TypeNet architecture, achieved accuracies ranging from 74.98% to 85.72% in condition-specific scenarios and from 52.24% to 80.54% in condition-agnostic scenarios. The findings highlight significant differences in keystroke dynamics between genuine and assisted writing. The outcomes of this study enhance our understanding of how users interact with generative AI and have implications for improving the reliability of digital educational platforms.
Abstract:The emergence of Large language models (LLMs) is expected to have a major impact on education. This paper explores the potential of using ChatGPT, an LLM, as a virtual Teaching Assistant (TA) in an Introductory Programming Course. We evaluate ChatGPT's capabilities by comparing its performance with that of human TAs in some TA functions. The TA functions which we focus on include (1) solving programming assignments, (2) grading student code submissions, and (3) providing feedback to undergraduate students in an introductory programming course. Firstly, we investigate how closely ChatGPT's solutions align with those submitted by students. This analysis goes beyond code correctness and also considers code quality. Secondly, we assess ChatGPT's proficiency in grading student code submissions using a given grading rubric and compare its performance with the grades assigned by human TAs. Thirdly, we analyze the quality and relevance of the feedback provided by ChatGPT. This evaluation considers how well ChatGPT addresses mistakes and offers suggestions for improvement in student solutions from both code correctness and code quality perspectives. We conclude with a discussion on the implications of integrating ChatGPT into computing education for automated grading, personalized learning experiences, and instructional support.