Abstract:The transition to online examinations and assignments raises significant concerns about academic integrity. Traditional plagiarism detection systems often struggle to identify instances of intelligent cheating, particularly when students utilize advanced generative AI tools to craft their responses. This study proposes a keystroke dynamics-based method to differentiate between bona fide and assisted writing within academic contexts. To facilitate this, a dataset was developed to capture the keystroke patterns of individuals engaged in writing tasks, both with and without the assistance of generative AI. The detector, trained using a modified TypeNet architecture, achieved accuracies ranging from 74.98% to 85.72% in condition-specific scenarios and from 52.24% to 80.54% in condition-agnostic scenarios. The findings highlight significant differences in keystroke dynamics between genuine and assisted writing. The outcomes of this study enhance our understanding of how users interact with generative AI and have implications for improving the reliability of digital educational platforms.
Abstract:Citation text plays a pivotal role in elucidating the connection between scientific documents, demanding an in-depth comprehension of the cited paper. Constructing citations is often time-consuming, requiring researchers to delve into extensive literature and grapple with articulating relevant content. To address this challenge, the field of citation text generation (CTG) has emerged. However, while earlier methods have primarily centered on creating single-sentence citations, practical scenarios frequently necessitate citing multiple papers within a single paragraph. To bridge this gap, we propose a method that leverages Large Language Models (LLMs) to generate multi-citation sentences. Our approach involves a single source paper and a collection of target papers, culminating in a coherent paragraph containing multi-sentence citation text. Furthermore, we introduce a curated dataset named MCG-S2ORC, composed of English-language academic research papers in Computer Science, showcasing multiple citation instances. In our experiments, we evaluate three LLMs LLaMA, Alpaca, and Vicuna to ascertain the most effective model for this endeavor. Additionally, we exhibit enhanced performance by integrating knowledge graphs from target papers into the prompts for generating citation text. This research underscores the potential of harnessing LLMs for citation generation, opening a compelling avenue for exploring the intricate connections between scientific documents.
Abstract:Recent advancements in LLMs have shown their significant potential in tasks like text summarization and generation. Yet, they often encounter difficulty while solving complex physics problems that require arithmetic calculation and a good understanding of concepts. Moreover, many physics problems include images that contain important details required to understand the problem's context. We propose an LMM-based chatbot to answer multimodal physics MCQs. For domain adaptation, we utilize the MM-PhyQA dataset comprising Indian high school-level multimodal physics problems. To improve the LMM's performance, we experiment with two techniques, RLHF (Reinforcement Learning from Human Feedback) and Image Captioning. In image captioning, we add a detailed explanation of the diagram in each image, minimizing hallucinations and image processing errors. We further explore the integration of Reinforcement Learning from Human Feedback (RLHF) methodology inspired by the ranking approach in RLHF to enhance the human-like problem-solving abilities of the models. The RLHF approach incorporates human feedback into the learning process of LLMs, improving the model's problem-solving skills, truthfulness, and reasoning capabilities, minimizing the hallucinations in the answers, and improving the quality instead of using vanilla-supervised fine-tuned models. We employ the LLaVA open-source model to answer multimodal physics MCQs and compare the performance with and without using RLHF.
Abstract:Large ground-truth datasets and recent advances in deep learning techniques have been useful for layout detection. However, because of the restricted layout diversity of these datasets, training on them requires a sizable number of annotated instances, which is both expensive and time-consuming. As a result, differences between the source and target domains may significantly impact how well these models function. To solve this problem, domain adaptation approaches have been developed that use a small quantity of labeled data to adjust the model to the target domain. In this research, we introduced a synthetic document dataset called RanLayNet, enriched with automatically assigned labels denoting spatial positions, ranges, and types of layout elements. The primary aim of this endeavor is to develop a versatile dataset capable of training models with robustness and adaptability to diverse document formats. Through empirical experimentation, we demonstrate that a deep layout identification model trained on our dataset exhibits enhanced performance compared to a model trained solely on actual documents. Moreover, we conduct a comparative analysis by fine-tuning inference models using both PubLayNet and IIIT-AR-13K datasets on the Doclaynet dataset. Our findings emphasize that models enriched with our dataset are optimal for tasks such as achieving 0.398 and 0.588 mAP95 score in the scientific document domain for the TABLE class.
Abstract:Citation Text Generation (CTG) is a task in natural language processing (NLP) that aims to produce text that accurately cites or references a cited document within a source document. In CTG, the generated text draws upon contextual cues from both the source document and the cited paper, ensuring accurate and relevant citation information is provided. Previous work in the field of citation generation is mainly based on the text summarization of documents. Following this, this paper presents a framework, and a comparative study to demonstrate the use of Large Language Models (LLMs) for the task of citation generation. Also, we have shown the improvement in the results of citation generation by incorporating the knowledge graph relations of the papers in the prompt for the LLM to better learn the relationship between the papers. To assess how well our model is performing, we have used a subset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1, and 33.14% in Meteor by including knowledge graphs.
Abstract:While Large Language Models (LLMs) can achieve human-level performance in various tasks, they continue to face challenges when it comes to effectively tackling multi-step physics reasoning tasks. To identify the shortcomings of existing models and facilitate further research in this area, we curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems. By evaluating the performance of contemporary LLMs that are publicly available, both with and without the incorporation of multimodal elements in these problems, we aim to shed light on their capabilities. For generating answers for questions consisting of multimodal input (in this case, images and text) we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset. For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models. We also showcased the performance of the novel Multi-Image Chain-of-Thought (MI-CoT) Prompting technique, which when used to train LLaVA-1.5 13b yielded the best results when tested on our dataset, with superior scores in most metrics and the highest accuracy of 71.65% on the test set.
Abstract:Certified defense methods against adversarial perturbations have been recently investigated in the black-box setting with a zeroth-order (ZO) perspective. However, these methods suffer from high model variance with low performance on high-dimensional datasets due to the ineffective design of the denoiser and are limited in their utilization of ZO techniques. To this end, we propose a certified ZO preprocessing technique for removing adversarial perturbations from the attacked image in the black-box setting using only model queries. We propose a robust UNet denoiser (RDUNet) that ensures the robustness of black-box models trained on high-dimensional datasets. We propose a novel black-box denoised smoothing (DS) defense mechanism, ZO-RUDS, by prepending our RDUNet to the black-box model, ensuring black-box defense. We further propose ZO-AE-RUDS in which RDUNet followed by autoencoder (AE) is prepended to the black-box model. We perform extensive experiments on four classification datasets, CIFAR-10, CIFAR-10, Tiny Imagenet, STL-10, and the MNIST dataset for image reconstruction tasks. Our proposed defense methods ZO-RUDS and ZO-AE-RUDS beat SOTA with a huge margin of $35\%$ and $9\%$, for low dimensional (CIFAR-10) and with a margin of $20.61\%$ and $23.51\%$ for high-dimensional (STL-10) datasets, respectively.