Abstract:Information in speech can be divided into two categories: what is being said (content) and how it is expressed (other). Current state-of-the-art (SOTA) techniques model speech at fixed segments, usually 10-25 ms, using a single embedding. Given the orthogonal nature of other and content information, attempting to optimize both within a single embedding results in suboptimal solutions. This approach divides the models capacity, limiting its ability to build complex hierarchical features effectively. In this work, we present an end-to-end speech representation learning framework designed to jointly optimize the other and content information (JOOCI) in speech. By using separate learnable parameters, JOOCI addresses this optimization challenge by modeling other and content information independently. Our results show that JOOCI consistently outperforms other SOTA models of similar size (100 million parameters) and pre-training data used (960 hours) by a significant margin when evaluated on a range of speech downstream tasks in the SUPERB benchmark, as shown in Table 1.
Abstract:Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
Abstract:Speech modeling methods learn one embedding for a fixed segment of speech, typically in between 10-25 ms. The information present in speech can be divided into two categories: "what is being said" (content) and "how it is expressed" (other) and these two are orthogonal in nature causing the optimization algorithm to find a sub-optimal solution if forced to optimize together. This leads to sub-optimal performance in one or all downstream tasks as shown by previous studies. Current self-supervised learning (SSL) methods such as HuBERT are very good at modeling the content information present in speech. Data augmentation improves the performance on tasks which require effective modeling of other information but this leads to a divided capacity of the model. In this work, we conduct a preliminary study to understand the importance of modeling other information using separate learnable parameters. We propose a modified version of HuBERT, termed Other HuBERT (O-HuBERT), to test our hypothesis. Our findings are twofold: first, the O-HuBERT method is able to utilize all layers to build complex features to encode other information; second, a robust data augmentation strategy is essential for learning the information required by tasks that depend on other information and to achieve state-of-the-art (SOTA) performance on the SUPERB benchmark with a similarly sized model (100 million parameters) and pre-training data (960 hours).
Abstract:Most existing Question Answering Datasets (QuADs) primarily focus on factoid-based short-context Question Answering (QA) in high-resource languages. However, the scope of such datasets for low-resource languages remains limited, with only a few works centered on factoid-based QuADs and none on non-factoid QuADs. Therefore, this work presents MuNfQuAD, a multilingual QuAD with non-factoid questions. It utilizes interrogative sub-headings from BBC news articles as questions and the corresponding paragraphs as silver answers. The dataset comprises over 370K QA pairs across 38 languages, encompassing several low-resource languages, and stands as the largest multilingual QA dataset to date. Based on the manual annotations of 790 QA-pairs from MuNfQuAD (golden set), we observe that 98\% of questions can be answered using their corresponding silver answer. Our fine-tuned Answer Paragraph Selection (APS) model outperforms the baselines. The APS model attained an accuracy of 80\% and 72\%, as well as a macro F1 of 72\% and 66\%, on the MuNfQuAD testset and the golden set, respectively. Furthermore, the APS model effectively generalizes certain a language within the golden set, even after being fine-tuned on silver labels.
Abstract:Depression has proven to be a significant public health issue, profoundly affecting the psychological well-being of individuals. If it remains undiagnosed, depression can lead to severe health issues, which can manifest physically and even lead to suicide. Generally, Diagnosing depression or any other mental disorder involves conducting semi-structured interviews alongside supplementary questionnaires, including variants of the Patient Health Questionnaire (PHQ) by Clinicians and mental health professionals. This approach places significant reliance on the experience and judgment of trained physicians, making the diagnosis susceptible to personal biases. Given that the underlying mechanisms causing depression are still being actively researched, physicians often face challenges in diagnosing and treating the condition, particularly in its early stages of clinical presentation. Recently, significant strides have been made in Artificial neural computing to solve problems involving text, image, and speech in various domains. Our analysis has aimed to leverage these state-of-the-art (SOTA) models in our experiments to achieve optimal outcomes leveraging multiple modalities. The experiments were performed on the Extended Distress Analysis Interview Corpus Wizard of Oz dataset (E-DAIC) corpus presented in the Audio/Visual Emotion Challenge (AVEC) 2019 Challenge. The proposed solutions demonstrate better results achieved by Proprietary and Open-source Large Language Models (LLMs), which achieved a Root Mean Square Error (RMSE) score of 3.98 on Textual Modality, beating the AVEC 2019 challenge baseline results and current SOTA regression analysis architectures. Additionally, the proposed solution achieved an accuracy of 71.43% in the classification task. The paper also includes a novel audio-visual multi-modal network that predicts PHQ-8 scores with an RMSE of 6.51.
Abstract:The transition to online examinations and assignments raises significant concerns about academic integrity. Traditional plagiarism detection systems often struggle to identify instances of intelligent cheating, particularly when students utilize advanced generative AI tools to craft their responses. This study proposes a keystroke dynamics-based method to differentiate between bona fide and assisted writing within academic contexts. To facilitate this, a dataset was developed to capture the keystroke patterns of individuals engaged in writing tasks, both with and without the assistance of generative AI. The detector, trained using a modified TypeNet architecture, achieved accuracies ranging from 74.98% to 85.72% in condition-specific scenarios and from 52.24% to 80.54% in condition-agnostic scenarios. The findings highlight significant differences in keystroke dynamics between genuine and assisted writing. The outcomes of this study enhance our understanding of how users interact with generative AI and have implications for improving the reliability of digital educational platforms.
Abstract:Audio-visual alignment after dubbing is a challenging research problem. To this end, we propose a novel method, DubWise Multi-modal Large Language Model (LLM)-based Text-to-Speech (TTS), which can control the speech duration of synthesized speech in such a way that it aligns well with the speakers lip movements given in the reference video even when the spoken text is different or in a different language. To accomplish this, we propose to utilize cross-modal attention techniques in a pre-trained GPT-based TTS. We combine linguistic tokens from text, speaker identity tokens via a voice cloning network, and video tokens via a proposed duration controller network. We demonstrate the effectiveness of our system on the Lip2Wav-Chemistry and LRS2 datasets. Also, the proposed method achieves improved lip sync and naturalness compared to the SOTAs for the same language but different text (i.e., non-parallel) and the different language, different text (i.e., cross-lingual) scenarios.
Abstract:Despite the significant advancements in Text-to-Speech (TTS) systems, their full utilization in automatic dubbing remains limited. This task necessitates the extraction of voice identity and emotional style from a reference speech in a source language and subsequently transferring them to a target language using cross-lingual TTS techniques. While previous approaches have mainly concentrated on controlling voice identity within the cross-lingual TTS framework, there has been limited work on incorporating emotion and voice identity together. To this end, we introduce an end-to-end Voice Identity and Emotional Style Controllable Cross-Lingual (VECL) TTS system using multilingual speakers and an emotion embedding network. Moreover, we introduce content and style consistency losses to enhance the quality of synthesized speech further. The proposed system achieved an average relative improvement of 8.83\% compared to the state-of-the-art (SOTA) methods on a database comprising English and three Indian languages (Hindi, Telugu, and Marathi).
Abstract:In recent years, self-supervised pre-training methods have gained significant traction in learning high-level information from raw speech. Among these methods, HuBERT has demonstrated SOTA performance in automatic speech recognition (ASR). However, HuBERT's performance lags behind data2vec due to disparities in pre-training strategies. In this paper, we propose (i) a Swap method to address pre-training and inference mismatch observed in HuBERT and (ii) incorporates Multicluster masked prediction loss for more effective utilization of the models capacity. The resulting method is, MS-HuBERT, an end-to-end self-supervised pre-training method for learning robust speech representations. It beats vanilla HuBERT on the ASR Librispeech benchmark on average by a 5% margin when evaluated on different finetuning splits. Additionally, we demonstrate that the learned embeddings obtained during pre-training encode essential information for improving performance of content based tasks such as ASR.
Abstract:Communication is defined as ``Who says what to whom with what effect.'' A message from a communicator generates downstream receiver effects, also known as behavior. Receiver behavior, being a downstream effect of the message, carries rich signals about it. Even after carrying signals about the message, the behavior data is often ignored while training large language models. We show that training LLMs on receiver behavior can actually help improve their content-understanding abilities. Specifically, we show that training LLMs to predict the receiver behavior of likes and comments improves the LLM's performance on a wide variety of downstream content understanding tasks. We show this performance increase over 40 video and image understanding tasks over 23 benchmark datasets across both 0-shot and fine-tuning settings, outperforming many supervised baselines. Moreover, since receiver behavior, such as likes and comments, is collected by default on the internet and does not need any human annotations to be useful, the performance improvement we get after training on this data is essentially free-lunch. We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.