Abstract:Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training. However, collecting large real-world datasets is intractable due to high operational costs. For robot learning to generalize despite these challenges, it is essential to leverage sources of data or priors beyond the robot's direct experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. These generative models encompass a broad range of real-world scenarios beyond a robot's direct experience and can synthesize novel synthetic experiences that expose robotic agents to additional world priors aiding real-world generalization at no extra cost. In particular, our approach leverages pre-trained generative models as an effective tool for data augmentation. We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets while inducing rich variations that enable real-world generalization. Based on diverse augmentations of robot data, we show how scalable robot manipulation policies can be trained and deployed both in simulation and in unseen real-world environments such as kitchens and table-tops. By demonstrating the effectiveness of image-text generative models in diverse real-world robotic applications, our generative augmentation framework provides a scalable and efficient path for boosting generalization in robot learning at no extra human cost.
Abstract:Leveraging sensing modalities across diverse spatial and temporal resolutions can improve performance of robotic manipulation tasks. Multi-spatial resolution sensing provides hierarchical information captured at different spatial scales and enables both coarse and precise motions. Simultaneously multi-temporal resolution sensing enables the agent to exhibit high reactivity and real-time control. In this work, we propose a framework, MResT (Multi-Resolution Transformer), for learning generalizable language-conditioned multi-task policies that utilize sensing at different spatial and temporal resolutions using networks of varying capacities to effectively perform real time control of precise and reactive tasks. We leverage off-the-shelf pretrained vision-language models to operate on low-frequency global features along with small non-pretrained models to adapt to high frequency local feedback. Through extensive experiments in 3 domains (coarse, precise and dynamic manipulation tasks), we show that our approach significantly improves (2X on average) over recent multi-task baselines. Further, our approach generalizes well to visual and geometric variations in target objects and to varying interaction forces.
Abstract:Blum & Stangl (2019) propose a data bias model to simulate under-representation and label bias in underprivileged population. For a stylized data distribution with i.i.d. label noise, under certain simple conditions on the bias parameters, they show that fair classification with equal opportunity constraints even on extremely biased distribution can recover an optimally accurate and fair classifier on the original distribution. Although their distribution is stylized, their result is interesting because it demonstrates that fairness constraints can implicitly rectify data bias and simultaneously overcome a perceived fairness-accuracy trade-off. In this paper, we give an alternate proof of their result using threshold-based characterization of optimal fair classifiers. Moreover, we show that their conditions on the bias parameters are both necessary and sufficient for their recovery result. Our technique is arguably more flexible, as it readily extends to more general distributions, e.g., when the labels in the original distribution have Massart noise instead of i.i.d. noise. Finally, we prove that for any data distribution, if the optimally accurate classifier in a hypothesis class is fair and robust, then it can be recovered through fair classification on the biased distribution, whenever the bias parameters satisfy certain simple conditions.
Abstract:Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.
Abstract:The grand aim of having a single robot that can manipulate arbitrary objects in diverse settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets is strenuous due to manual efforts, operational costs, and safety challenges. A path toward such an universal agent would require a structured framework capable of wide generalization but trained within a reasonable data budget. In this paper, we develop an efficient system (RoboAgent) for training universal agents capable of multi-task manipulation skills using (a) semantic augmentations that can rapidly multiply existing datasets and (b) action representations that can extract performant policies with small yet diverse multi-modal datasets without overfitting. In addition, reliable task conditioning and an expressive policy architecture enable our agent to exhibit a diverse repertoire of skills in novel situations specified using language commands. Using merely 7500 demonstrations, we are able to train a single agent capable of 12 unique skills, and demonstrate its generalization over 38 tasks spread across common daily activities in diverse kitchen scenes. On average, RoboAgent outperforms prior methods by over 40% in unseen situations while being more sample efficient and being amenable to capability improvements and extensions through fine-tuning. Videos at https://robopen.github.io/
Abstract:Recent works have shown that large models pretrained on common visual learning tasks can provide useful representations for a wide range of specialized perception problems, as well as a variety of robotic manipulation tasks. While prior work on robotic manipulation has predominantly used frozen pretrained features, we demonstrate that in robotics this approach can fail to reach optimal performance, and that fine-tuning of the full model can lead to significantly better results. Unfortunately, fine-tuning disrupts the pretrained visual representation, and causes representational drift towards the fine-tuned task thus leading to a loss of the versatility of the original model. We introduce "lossless adaptation" to address this shortcoming of classical fine-tuning. We demonstrate that appropriate placement of our parameter efficient adapters can significantly reduce the performance gap between frozen pretrained representations and full end-to-end fine-tuning without changes to the original representation and thus preserving original capabilities of the pretrained model. We perform a comprehensive investigation across three major model architectures (ViTs, NFNets, and ResNets), supervised (ImageNet-1K classification) and self-supervised pretrained weights (CLIP, BYOL, Visual MAE) in 3 task domains and 35 individual tasks, and demonstrate that our claims are strongly validated in various settings.
Abstract:In this paper, we consider a theoretical model for injecting data bias, namely, under-representation and label bias (Blum & Stangl, 2019). We theoretically and empirically study its effect on the accuracy and fairness of fair classifiers. Theoretically, we prove that the Bayes optimal group-aware fair classifier on the original data distribution can be recovered by simply minimizing a carefully chosen reweighed loss on the bias-injected distribution. Through extensive experiments on both synthetic and real-world datasets (e.g., Adult, German Credit, Bank Marketing, COMPAS), we empirically audit pre-, in-, and post-processing fair classifiers from standard fairness toolkits for their fairness and accuracy by injecting varying amounts of under-representation and label bias in their training data (but not the test data). Our main observations are: (1) The fairness and accuracy of many standard fair classifiers degrade severely as the bias injected in their training data increases, (2) A simple logistic regression model trained on the right data can often outperform, in both accuracy and fairness, most fair classifiers trained on biased training data, and (3) A few, simple fairness techniques (e.g., reweighing, exponentiated gradients) seem to offer stable accuracy and fairness guarantees even when their training data is injected with under-representation and label bias. Our experiments also show how to integrate a measure of data bias risk in the existing fairness dashboards for real-world deployments
Abstract:Deep learning has shown remarkable progress in a wide range of problems. However, efficient training of such models requires large-scale datasets, and getting annotations for such datasets can be challenging and costly. In this work, we explore the use of user-generated freely available labels from web videos for video understanding. We create a benchmark dataset consisting of around 2 million videos with associated user-generated annotations and other meta information. We utilize the collected dataset for action classification and demonstrate its usefulness with existing small-scale annotated datasets, UCF101 and HMDB51. We study different loss functions and two pretraining strategies, simple and self-supervised learning. We also show how a network pretrained on the proposed dataset can help against video corruption and label noise in downstream datasets. We present this as a benchmark dataset in noisy learning for video understanding. The dataset, code, and trained models will be publicly available for future research.
Abstract:Lifelong-learning robots need to be able to acquire new skills and plan for new tasks over time. Prior works on planning with skills often make assumptions on the structure of skills and tasks, like subgoal skills, shared skill implementations, or learning task-specific plan skeletons, that limit their application to new and different skills and tasks. By contrast, we propose doing task planning by jointly searching in the space of skills and their parameters with skill effect models learned in simulation. Our approach is flexible about skill parameterizations and task specifications, and we use an iterative training procedure to efficiently generate relevant data to train such models. Experiments demonstrate the ability of our planner to integrate new skills in a lifelong manner, finding new task strategies with lower costs in both train and test tasks. We additionally show that our method can transfer to the real world without further fine-tuning.
Abstract:To perform manipulation tasks in the real world, robots need to operate on objects with various shapes, sizes and without access to geometric models. It is often unfeasible to train monolithic neural network policies across such large variance in object properties. Towards this generalization challenge, we propose to learn modular task policies which compose object-centric task-axes controllers. These task-axes controllers are parameterized by properties associated with underlying objects in the scene. We infer these controller parameters directly from visual input using multi-view dense correspondence learning. Our overall approach provides a simple, modular and yet powerful framework for learning manipulation tasks. We empirically evaluate our approach on multiple different manipulation tasks and show its ability to generalize to large variance in object size, shape and geometry.