Abstract:We present SIREN for registration of multi-robot Gaussian Splatting (GSplat) maps, with zero access to camera poses, images, and inter-map transforms for initialization or fusion of local submaps. To realize these capabilities, SIREN harnesses the versatility and robustness of semantics in three critical ways to derive a rigorous registration pipeline for multi-robot GSplat maps. First, SIREN utilizes semantics to identify feature-rich regions of the local maps where the registration problem is better posed, eliminating the need for any initialization which is generally required in prior work. Second, SIREN identifies candidate correspondences between Gaussians in the local maps using robust semantic features, constituting the foundation for robust geometric optimization, coarsely aligning 3D Gaussian primitives extracted from the local maps. Third, this key step enables subsequent photometric refinement of the transformation between the submaps, where SIREN leverages novel-view synthesis in GSplat maps along with a semantics-based image filter to compute a high-accuracy non-rigid transformation for the generation of a high-fidelity fused map. We demonstrate the superior performance of SIREN compared to competing baselines across a range of real-world datasets, and in particular, across the most widely-used robot hardware platforms, including a manipulator, drone, and quadruped. In our experiments, SIREN achieves about 90x smaller rotation errors, 300x smaller translation errors, and 44x smaller scale errors in the most challenging scenes, where competing methods struggle. We will release the code and provide a link to the project page after the review process.
Abstract:Visuomotor policies trained via imitation learning are capable of performing challenging manipulation tasks, but are often extremely brittle to lighting, visual distractors, and object locations. These vulnerabilities can depend unpredictably on the specifics of training, and are challenging to expose without time-consuming and expensive hardware evaluations. We propose the problem of predictive red teaming: discovering vulnerabilities of a policy with respect to environmental factors, and predicting the corresponding performance degradation without hardware evaluations in off-nominal scenarios. In order to achieve this, we develop RoboART: an automated red teaming (ART) pipeline that (1) modifies nominal observations using generative image editing to vary different environmental factors, and (2) predicts performance under each variation using a policy-specific anomaly detector executed on edited observations. Experiments across 500+ hardware trials in twelve off-nominal conditions for visuomotor diffusion policies demonstrate that RoboART predicts performance degradation with high accuracy (less than 0.19 average difference between predicted and real success rates). We also demonstrate how predictive red teaming enables targeted data collection: fine-tuning with data collected under conditions predicted to be adverse boosts baseline performance by 2-7x.
Abstract:The remarkable performance of large language models (LLMs) in content generation, coding, and common-sense reasoning has spurred widespread integration into many facets of society. However, integration of LLMs raises valid questions on their reliability and trustworthiness, given their propensity to generate hallucinations: plausible, factually-incorrect responses, which are expressed with striking confidence. Previous work has shown that hallucinations and other non-factual responses generated by LLMs can be detected by examining the uncertainty of the LLM in its response to the pertinent prompt, driving significant research efforts devoted to quantifying the uncertainty of LLMs. This survey seeks to provide an extensive review of existing uncertainty quantification methods for LLMs, identifying their salient features, along with their strengths and weaknesses. We present existing methods within a relevant taxonomy, unifying ostensibly disparate methods to aid understanding of the state of the art. Furthermore, we highlight applications of uncertainty quantification methods for LLMs, spanning chatbot and textual applications to embodied artificial intelligence applications in robotics. We conclude with open research challenges in uncertainty quantification of LLMs, seeking to motivate future research.
Abstract:Large language models (LLMs) have exhibited remarkable reasoning and planning capabilities. Most prior work in this area has used LLMs to reason through steps from an initial to a goal state or criterion, thereby effectively reasoning in a forward direction. Nonetheless, many planning problems exhibit an inherent asymmetry such that planning backward from the goal is significantly easier -- for example, if there are bottlenecks close to the goal. We take inspiration from this observation and demonstrate that this bias holds for LLM planning as well: planning performance in one direction correlates with the planning complexity of the problem in that direction. However, our experiments also reveal systematic biases which lead to poor planning in the backward direction. With this knowledge, we propose a backward planning algorithm for LLMs that first flips the problem and then plans forward in the flipped problem. This helps avoid the backward bias, generate more diverse candidate plans, and exploit asymmetries between the forward and backward directions in planning problems -- we find that combining planning in both directions with self-verification improves the overall planning success rates by 4-24% in three planning domains.
Abstract:Vision-language-action (VLA) models trained on large-scale internet data and robot demonstrations have the potential to serve as generalist robot policies. However, despite their large-scale training, VLAs are often brittle to task-irrelevant visual details such as distractor objects or background colors. We introduce Bring Your Own VLA (BYOVLA): a run-time intervention scheme that (1) dynamically identifies regions of the input image that the model is sensitive to, and (2) minimally alters task-irrelevant regions to reduce the model's sensitivity using automated image editing tools. Our approach is compatible with any off the shelf VLA without model fine-tuning or access to the model's weights. Hardware experiments on language-instructed manipulation tasks demonstrate that BYOVLA enables state-of-the-art VLA models to nearly retain their nominal performance in the presence of distractor objects and backgrounds, which otherwise degrade task success rates by up to 40%. Website with additional information, videos, and code: https://aasherh.github.io/byovla/ .
Abstract:This paper describes an efficient, open source PyTorch implementation of the Spectral Transform Unit. We investigate sequence prediction tasks over several modalities including language, robotics, and simulated dynamical systems. We find that for the same parameter count, the STU and its variants outperform the Transformer as well as other leading state space models across various modalities.
Abstract:We introduce Diffusion Policy Policy Optimization, DPPO, an algorithmic framework including best practices for fine-tuning diffusion-based policies (e.g. Diffusion Policy) in continuous control and robot learning tasks using the policy gradient (PG) method from reinforcement learning (RL). PG methods are ubiquitous in training RL policies with other policy parameterizations; nevertheless, they had been conjectured to be less efficient for diffusion-based policies. Surprisingly, we show that DPPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks compared to other RL methods for diffusion-based policies and also compared to PG fine-tuning of other policy parameterizations. Through experimental investigation, we find that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization, leading to structured and on-manifold exploration, stable training, and strong policy robustness. We further demonstrate the strengths of DPPO in a range of realistic settings, including simulated robotic tasks with pixel observations, and via zero-shot deployment of simulation-trained policies on robot hardware in a long-horizon, multi-stage manipulation task. Website with code: diffusion-ppo.github.io
Abstract:We consider the problem of Embodied Question Answering (EQA), which refers to settings where an embodied agent such as a robot needs to actively explore an environment to gather information until it is confident about the answer to a question. In this work, we leverage the strong semantic reasoning capabilities of large vision-language models (VLMs) to efficiently explore and answer such questions. However, there are two main challenges when using VLMs in EQA: they do not have an internal memory for mapping the scene to be able to plan how to explore over time, and their confidence can be miscalibrated and can cause the robot to prematurely stop exploration or over-explore. We propose a method that first builds a semantic map of the scene based on depth information and via visual prompting of a VLM - leveraging its vast knowledge of relevant regions of the scene for exploration. Next, we use conformal prediction to calibrate the VLM's question answering confidence, allowing the robot to know when to stop exploration - leading to a more calibrated and efficient exploration strategy. To test our framework in simulation, we also contribute a new EQA dataset with diverse, realistic human-robot scenarios and scenes built upon the Habitat-Matterport 3D Research Dataset (HM3D). Both simulated and real robot experiments show our proposed approach improves the performance and efficiency over baselines that do no leverage VLM for exploration or do not calibrate its confidence. Webpage with experiment videos and code: https://explore-eqa.github.io/
Abstract:Tasks where robots must cooperate with humans, such as navigating around a cluttered home or sorting everyday items, are challenging because they exhibit a wide range of valid actions that lead to similar outcomes. Moreover, zero-shot cooperation between human-robot partners is an especially challenging problem because it requires the robot to infer and adapt on the fly to a latent human intent, which could vary significantly from human to human. Recently, deep learned motion prediction models have shown promising results in predicting human intent but are prone to being confidently incorrect. In this work, we present Risk-Calibrated Interactive Planning (RCIP), which is a framework for measuring and calibrating risk associated with uncertain action selection in human-robot cooperation, with the fundamental idea that the robot should ask for human clarification when the risk associated with the uncertainty in the human's intent cannot be controlled. RCIP builds on the theory of set-valued risk calibration to provide a finite-sample statistical guarantee on the cumulative loss incurred by the robot while minimizing the cost of human clarification in complex multi-step settings. Our main insight is to frame the risk control problem as a sequence-level multi-hypothesis testing problem, allowing efficient calibration using a low-dimensional parameter that controls a pre-trained risk-aware policy. Experiments across a variety of simulated and real-world environments demonstrate RCIP's ability to predict and adapt to a diverse set of dynamic human intents.
Abstract:Rapid advances in perception have enabled large pre-trained models to be used out of the box for processing high-dimensional, noisy, and partial observations of the world into rich geometric representations (e.g., occupancy predictions). However, safe integration of these models onto robots remains challenging due to a lack of reliable performance in unfamiliar environments. In this work, we present a framework for rigorously quantifying the uncertainty of pre-trained perception models for occupancy prediction in order to provide end-to-end statistical safety assurances for navigation. We build on techniques from conformal prediction for producing a calibrated perception system that lightly processes the outputs of a pre-trained model while ensuring generalization to novel environments and robustness to distribution shifts in states when perceptual outputs are used in conjunction with a planner. The calibrated system can be used in combination with any safe planner to provide an end-to-end statistical assurance on safety in a new environment with a user-specified threshold $1-\epsilon$. We evaluate the resulting approach - which we refer to as Perceive with Confidence (PwC) - with experiments in simulation and on hardware where a quadruped robot navigates through indoor environments containing objects unseen during training or calibration. These experiments validate the safety assurances provided by PwC and demonstrate significant improvements in empirical safety rates compared to baselines.