Abstract:With the rise of stochastic generative models in robot policy learning, end-to-end visuomotor policies are increasingly successful at solving complex tasks by learning from human demonstrations. Nevertheless, since real-world evaluation costs afford users only a small number of policy rollouts, it remains a challenge to accurately gauge the performance of such policies. This is exacerbated by distribution shifts causing unpredictable changes in performance during deployment. To rigorously evaluate behavior cloning policies, we present a framework that provides a tight lower-bound on robot performance in an arbitrary environment, using a minimal number of experimental policy rollouts. Notably, by applying the standard stochastic ordering to robot performance distributions, we provide a worst-case bound on the entire distribution of performance (via bounds on the cumulative distribution function) for a given task. We build upon established statistical results to ensure that the bounds hold with a user-specified confidence level and tightness, and are constructed from as few policy rollouts as possible. In experiments we evaluate policies for visuomotor manipulation in both simulation and hardware. Specifically, we (i) empirically validate the guarantees of the bounds in simulated manipulation settings, (ii) find the degree to which a learned policy deployed on hardware generalizes to new real-world environments, and (iii) rigorously compare two policies tested in out-of-distribution settings. Our experimental data, code, and implementation of confidence bounds are open-source.
Abstract:Imitation Learning (IL) is a widely used framework for learning imitative behavior from demonstrations. It is especially appealing for solving complex real-world tasks where handcrafting reward function is difficult, or when the goal is to mimic human expert behavior. However, the learned imitative policy can only follow the behavior in the demonstration. When applying the imitative policy, we may need to customize the policy behavior to meet different requirements coming from diverse downstream tasks. Meanwhile, we still want the customized policy to maintain its imitative nature. To this end, we formulate a new problem setting called policy customization. It defines the learning task as training a policy that inherits the characteristics of the prior policy while satisfying some additional requirements imposed by a target downstream task. We propose a novel and principled approach to interpret and determine the trade-off between the two task objectives. Specifically, we formulate the customization problem as a Markov Decision Process (MDP) with a reward function that combines 1) the inherent reward of the demonstration; and 2) the add-on reward specified by the downstream task. We propose a novel framework, Residual Q-learning, which can solve the formulated MDP by leveraging the prior policy without knowing the inherent reward or value function of the prior policy. We derive a family of residual Q-learning algorithms that can realize offline and online policy customization, and show that the proposed algorithms can effectively accomplish policy customization tasks in various environments.
Abstract:Learning-based control approaches have shown great promise in performing complex tasks directly from high-dimensional perception data for real robotic systems. Nonetheless, the learned controllers can behave unexpectedly if the trajectories of the system divert from the training data distribution, which can compromise safety. In this work, we propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations. Our methodology is inspired by Control Barrier Functions (CBFs), which are model-based tools from the nonlinear control literature that can be used to construct minimally invasive safe policy filters. While existing methods based on CBFs require a known low-dimensional state representation, our proposed approach is directly applicable to systems that rely solely on high-dimensional visual observations by learning in a latent state-space. We demonstrate that our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
Abstract:Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach.
Abstract:Successful robotic operation in stochastic environments relies on accurate characterization of the underlying probability distributions, yet this is often imperfect due to limited knowledge. This work presents a control algorithm that is capable of handling such distributional mismatches. Specifically, we propose a novel nonlinear MPC for distributionally robust control, which plans locally optimal feedback policies against a worst-case distribution within a given KL divergence bound from a Gaussian distribution. Leveraging mathematical equivalence between distributionally robust control and risk-sensitive optimal control, our framework also provides an algorithm to dynamically adjust the risk-sensitivity level online for risk-sensitive control. The benefits of the distributional robustness as well as the automatic risk-sensitivity adjustment are demonstrated in a dynamic collision avoidance scenario where the predictive distribution of human motion is erroneous.
Abstract:This paper presents a novel online framework for safe crowd-robot interaction based on risk-sensitive stochastic optimal control, wherein the risk is modeled by the entropic risk measure. The sampling-based model predictive control relies on mode insertion gradient optimization for this risk measure as well as Trajectron++, a state-of-the-art generative model that produces multimodal probabilistic trajectory forecasts for multiple interacting agents. Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control, which is advantageous compared to end-to-end policy learning methods in that it allows the robot's desired behavior to be specified at run time. In particular, we show that the robot exhibits diverse interaction behavior by varying the risk sensitivity parameter. A simulation study and a real-world experiment show that the proposed online framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
Abstract:We propose a novel belief space planning technique for continuous dynamics by viewing the belief system as a hybrid dynamical system with time-driven switching. Our approach is based on the perturbation theory of differential equations and extends Sequential Action Control to stochastic belief dynamics. The resulting algorithm, which we name SACBP, does not require discretization of spaces or time and synthesizes control signals in near real-time. SACBP is an anytime algorithm that can handle general parametric Bayesian filters under certain assumptions. We demonstrate the effectiveness of our approach in an active sensing scenario and a model-based Bayesian reinforcement learning problem. In these challenging problems, we show that the algorithm significantly outperforms other existing solution techniques including approximate dynamic programming and local trajectory optimization.