Abstract:Most existing Question Answering Datasets (QuADs) primarily focus on factoid-based short-context Question Answering (QA) in high-resource languages. However, the scope of such datasets for low-resource languages remains limited, with only a few works centered on factoid-based QuADs and none on non-factoid QuADs. Therefore, this work presents MuNfQuAD, a multilingual QuAD with non-factoid questions. It utilizes interrogative sub-headings from BBC news articles as questions and the corresponding paragraphs as silver answers. The dataset comprises over 370K QA pairs across 38 languages, encompassing several low-resource languages, and stands as the largest multilingual QA dataset to date. Based on the manual annotations of 790 QA-pairs from MuNfQuAD (golden set), we observe that 98\% of questions can be answered using their corresponding silver answer. Our fine-tuned Answer Paragraph Selection (APS) model outperforms the baselines. The APS model attained an accuracy of 80\% and 72\%, as well as a macro F1 of 72\% and 66\%, on the MuNfQuAD testset and the golden set, respectively. Furthermore, the APS model effectively generalizes certain a language within the golden set, even after being fine-tuned on silver labels.
Abstract:Coreference resolution involves the task of identifying text spans within a discourse that pertain to the same real-world entity. While this task has been extensively explored in the English language, there has been a notable scarcity of publicly accessible resources and models for coreference resolution in South Asian languages. We introduce a Translated dataset for Multilingual Coreference Resolution (TransMuCoRes) in 31 South Asian languages using off-the-shelf tools for translation and word-alignment. Nearly all of the predicted translations successfully pass a sanity check, and 75% of English references align with their predicted translations. Using multilingual encoders, two off-the-shelf coreference resolution models were trained on a concatenation of TransMuCoRes and a Hindi coreference resolution dataset with manual annotations. The best performing model achieved a score of 64 and 68 for LEA F1 and CoNLL F1, respectively, on our test-split of Hindi golden set. This study is the first to evaluate an end-to-end coreference resolution model on a Hindi golden set. Furthermore, this work underscores the limitations of current coreference evaluation metrics when applied to datasets with split antecedents, advocating for the development of more suitable evaluation metrics.