Abstract:Most existing Question Answering Datasets (QuADs) primarily focus on factoid-based short-context Question Answering (QA) in high-resource languages. However, the scope of such datasets for low-resource languages remains limited, with only a few works centered on factoid-based QuADs and none on non-factoid QuADs. Therefore, this work presents MuNfQuAD, a multilingual QuAD with non-factoid questions. It utilizes interrogative sub-headings from BBC news articles as questions and the corresponding paragraphs as silver answers. The dataset comprises over 370K QA pairs across 38 languages, encompassing several low-resource languages, and stands as the largest multilingual QA dataset to date. Based on the manual annotations of 790 QA-pairs from MuNfQuAD (golden set), we observe that 98\% of questions can be answered using their corresponding silver answer. Our fine-tuned Answer Paragraph Selection (APS) model outperforms the baselines. The APS model attained an accuracy of 80\% and 72\%, as well as a macro F1 of 72\% and 66\%, on the MuNfQuAD testset and the golden set, respectively. Furthermore, the APS model effectively generalizes certain a language within the golden set, even after being fine-tuned on silver labels.
Abstract:Recent advancements in graph learning contributed to explaining predictions generated by Graph Neural Networks. However, existing methodologies often fall short when applied to real-world datasets. We introduce HOGE, a framework to capture higher-order structures using cell complexes, which excel at modeling higher-order relationships. In the real world, higher-order structures are ubiquitous like in molecules or social networks, thus our work significantly enhances the practical applicability of graph explanations. HOGE produces clearer and more accurate explanations compared to prior methods. Our method can be integrated with all existing graph explainers, ensuring seamless integration into current frameworks. We evaluate on GraphXAI benchmark datasets, HOGE achieves improved or comparable performance with minimal computational overhead. Ablation studies show that the performance gain observed can be attributed to the higher-order structures that come from introducing cell complexes.
Abstract:Despite recent advancements showcasing the impressive capabilities of Large Language Models (LLMs) in conversational systems, we show that even state-of-the-art LLMs are morally inconsistent in their generations, questioning their reliability (and trustworthiness in general). Prior works in LLM evaluation focus on developing ground-truth data to measure accuracy on specific tasks. However, for moral scenarios that often lack universally agreed-upon answers, consistency in model responses becomes crucial for their reliability. To address this issue, we propose an information-theoretic measure called Semantic Graph Entropy (SaGE), grounded in the concept of "Rules of Thumb" (RoTs) to measure a model's moral consistency. RoTs are abstract principles learned by a model and can help explain their decision-making strategies effectively. To this extent, we construct the Moral Consistency Corpus (MCC), containing 50K moral questions, responses to them by LLMs, and the RoTs that these models followed. Furthermore, to illustrate the generalizability of SaGE, we use it to investigate LLM consistency on two popular datasets -- TruthfulQA and HellaSwag. Our results reveal that task-accuracy and consistency are independent problems, and there is a dire need to investigate these issues further.
Abstract:A Large Language Model~(LLM) is considered consistent if semantically equivalent prompts produce semantically equivalent responses. Despite recent advancements showcasing the impressive capabilities of LLMs in conversational systems, we show that even state-of-the-art LLMs are highly inconsistent in their generations, questioning their reliability. Prior research has tried to measure this with task-specific accuracies. However, this approach is unsuitable for moral scenarios, such as the trolley problem, with no ``correct'' answer. To address this issue, we propose a novel information-theoretic measure called Semantic Graph Entropy~(SGE) to measure the consistency of an LLM in moral scenarios. We leverage ``Rules of Thumb''~(RoTs) to explain a model's decision-making strategies and further enhance our metric. Compared to existing consistency metrics, SGE correlates better with human judgments across five LLMs. In the future, we aim to investigate the root causes of LLM inconsistencies and propose improvements.