Abstract:Ensembling neural machine translation (NMT) models to produce higher-quality translations than the $L$ individual models has been extensively studied. Recent methods typically employ a candidate selection block (CSB) and an encoder-decoder fusion block (FB), requiring inference across \textit{all} candidate models, leading to significant computational overhead, generally $\Omega(L)$. This paper introduces \textbf{SmartGen}, a reinforcement learning (RL)-based strategy that improves the CSB by selecting a small, fixed number of candidates and identifying optimal groups to pass to the fusion block for each input sentence. Furthermore, previously, the CSB and FB were trained independently, leading to suboptimal NMT performance. Our DQN-based \textbf{SmartGen} addresses this by using feedback from the FB block as a reward during training. We also resolve a key issue in earlier methods, where candidates were passed to the FB without modification, by introducing a Competitive Correction Block (CCB). Finally, we validate our approach with extensive experiments on English-Hindi translation tasks in both directions.
Abstract:Open-Set Object Detection (OSOD) has emerged as a contemporary research direction to address the detection of unknown objects. Recently, few works have achieved remarkable performance in the OSOD task by employing contrastive clustering to separate unknown classes. In contrast, we propose a new semantic clustering-based approach to facilitate a meaningful alignment of clusters in semantic space and introduce a class decorrelation module to enhance inter-cluster separation. Our approach further incorporates an object focus module to predict objectness scores, which enhances the detection of unknown objects. Further, we employ i) an evaluation technique that penalizes low-confidence outputs to mitigate the risk of misclassification of the unknown objects and ii) a new metric called HMP that combines known and unknown precision using harmonic mean. Our extensive experiments demonstrate that the proposed model achieves significant improvement on the MS-COCO & PASCAL VOC dataset for the OSOD task.
Abstract:We address the challenging task of neural machine translation (NMT) in the entertainment domain, where the objective is to automatically translate a given dialogue from a source language content to a target language. This task has various applications, particularly in automatic dubbing, subtitling, and other content localization tasks, enabling source content to reach a wider audience. Traditional NMT systems typically translate individual sentences in isolation, without facilitating knowledge transfer of crucial elements such as the context and style from previously encountered sentences. In this work, we emphasize the significance of these fundamental aspects in producing pertinent and captivating translations. We demonstrate their significance through several examples and propose a novel framework for entertainment translation, which, to our knowledge, is the first of its kind. Furthermore, we introduce an algorithm to estimate the context and style of the current session and use these estimations to generate a prompt that guides a Large Language Model (LLM) to generate high-quality translations. Our method is both language and LLM-agnostic, making it a general-purpose tool. We demonstrate the effectiveness of our algorithm through various numerical studies and observe significant improvement in the COMET scores over various state-of-the-art LLMs. Moreover, our proposed method consistently outperforms baseline LLMs in terms of win-ratio.
Abstract:The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC framework to generate precise speech of the target emotion. Traditional approaches control the intensity of an emotional state in the utterance via emotion class probabilities or intensity labels that often lead to inept style manipulations and degradations in quality. On the contrary, we aim to regulate emotion intensity using self-supervised learning-based feature representations and unsupervised directional latent vector modeling (DVM) in the emotional embedding space within a diffusion-based framework. These emotion embeddings can be modified based on the given target emotion intensity and the corresponding direction vector. Furthermore, the updated embeddings can be fused in the reverse diffusion process to generate the speech with the desired emotion and intensity. In summary, this paper aims to achieve high-quality emotional intensity regularization in the diffusion-based EVC framework, which is the first of its kind work. The effectiveness of the proposed method has been shown across state-of-the-art (SOTA) baselines in terms of subjective and objective evaluations for the English and Hindi languages \footnote{Demo samples are available at the following URL: \url{https://nirmesh-sony.github.io/EmoReg/}}.
Abstract:Recently, weakly supervised video anomaly detection (WS-VAD) has emerged as a contemporary research direction to identify anomaly events like violence and nudity in videos using only video-level labels. However, this task has substantial challenges, including addressing imbalanced modality information and consistently distinguishing between normal and abnormal features. In this paper, we address these challenges and propose a multi-modal WS-VAD framework to accurately detect anomalies such as violence and nudity. Within the proposed framework, we introduce a new fusion mechanism known as the Cross-modal Fusion Adapter (CFA), which dynamically selects and enhances highly relevant audio-visual features in relation to the visual modality. Additionally, we introduce a Hyperbolic Lorentzian Graph Attention (HLGAtt) to effectively capture the hierarchical relationships between normal and abnormal representations, thereby enhancing feature separation accuracy. Through extensive experiments, we demonstrate that the proposed model achieves state-of-the-art results on benchmark datasets of violence and nudity detection.
Abstract:Automatic speech recognition has recently seen a significant advancement with large foundational models such as Whisper. However, these models often struggle to perform well in low-resource languages, such as Indian languages. This paper explores two novel approaches to enhance Whisper's multilingual speech recognition performance in Indian languages. First, we propose prompt-tuning with language family information, which enhances Whisper's accuracy in linguistically similar languages. Second, we introduce a novel tokenizer that reduces the number of generated tokens, thereby accelerating Whisper's inference speed. Our extensive experiments demonstrate that the tokenizer significantly reduces inference time, while prompt-tuning enhances accuracy across various Whisper model sizes, including Small, Medium, and Large. Together, these techniques achieve a balance between optimal WER and inference speed.
Abstract:Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.
Abstract:Audio-visual alignment after dubbing is a challenging research problem. To this end, we propose a novel method, DubWise Multi-modal Large Language Model (LLM)-based Text-to-Speech (TTS), which can control the speech duration of synthesized speech in such a way that it aligns well with the speakers lip movements given in the reference video even when the spoken text is different or in a different language. To accomplish this, we propose to utilize cross-modal attention techniques in a pre-trained GPT-based TTS. We combine linguistic tokens from text, speaker identity tokens via a voice cloning network, and video tokens via a proposed duration controller network. We demonstrate the effectiveness of our system on the Lip2Wav-Chemistry and LRS2 datasets. Also, the proposed method achieves improved lip sync and naturalness compared to the SOTAs for the same language but different text (i.e., non-parallel) and the different language, different text (i.e., cross-lingual) scenarios.
Abstract:Despite the significant advancements in Text-to-Speech (TTS) systems, their full utilization in automatic dubbing remains limited. This task necessitates the extraction of voice identity and emotional style from a reference speech in a source language and subsequently transferring them to a target language using cross-lingual TTS techniques. While previous approaches have mainly concentrated on controlling voice identity within the cross-lingual TTS framework, there has been limited work on incorporating emotion and voice identity together. To this end, we introduce an end-to-end Voice Identity and Emotional Style Controllable Cross-Lingual (VECL) TTS system using multilingual speakers and an emotion embedding network. Moreover, we introduce content and style consistency losses to enhance the quality of synthesized speech further. The proposed system achieved an average relative improvement of 8.83\% compared to the state-of-the-art (SOTA) methods on a database comprising English and three Indian languages (Hindi, Telugu, and Marathi).
Abstract:Self-supervised learned (SSL) models such as Wav2vec and HuBERT yield state-of-the-art results on speech-related tasks. Given the effectiveness of such models, it is advantageous to use them in conventional ASR systems. While some approaches suggest incorporating these models as a trainable encoder or a learnable frontend, training such systems is extremely slow and requires a lot of computation cycles. In this work, we propose two simple approaches that use (1) framewise addition and (2) cross-attention mechanisms to efficiently incorporate the representations from the SSL model(s) into the ASR architecture, resulting in models that are comparable in size with standard encoder-decoder conformer systems while also avoiding the usage of SSL models during training. Our approach results in faster training and yields significant performance gains on the Librispeech and Tedlium datasets compared to baselines. We further provide detailed analysis and ablation studies that demonstrate the effectiveness of our approach.