Abstract:This study explores the effectiveness of using knowledge graphs generated by large language models to decompose high school-level physics questions into sub-questions. We introduce a pipeline aimed at enhancing model response quality for Question Answering tasks. By employing LLMs to construct knowledge graphs that capture the internal logic of the questions, these graphs then guide the generation of subquestions. We hypothesize that this method yields sub-questions that are more logically consistent with the original questions compared to traditional decomposition techniques. Our results show that sub-questions derived from knowledge graphs exhibit significantly improved fidelity to the original question's logic. This approach not only enhances the learning experience by providing clearer and more contextually appropriate sub-questions but also highlights the potential of LLMs to transform educational methodologies. The findings indicate a promising direction for applying AI to improve the quality and effectiveness of educational content.
Abstract:Few shot and Chain-of-Thought prompting have shown promise when applied to Physics Question Answering Tasks, but are limited by the lack of mathematical ability inherent to LLMs, and are prone to hallucination. By utilizing a Mixture of Experts (MoE) Model, along with analogical prompting, we are able to show improved model performance when compared to the baseline on standard LLMs. We also survey the limits of these prompting techniques and the effects they have on model performance. Additionally, we propose Analogical CoT prompting, a prompting technique designed to allow smaller, open source models to leverage Analogical prompting, something they have struggled with, possibly due to a lack of specialist training data.