Abstract:Voice biometric tasks, such as age estimation require modeling the often complex relationship between voice features and the biometric variable. While deep learning models can handle such complexity, they typically require large amounts of accurately labeled data to perform well. Such data are often scarce for biometric tasks such as voice-based age prediction. On the other hand, simpler models like linear regression can work with smaller datasets but often fail to generalize to the underlying non-linear patterns present in the data. In this paper we propose the Tessellated Linear Model (TLM), a piecewise linear approach that combines the simplicity of linear models with the capacity of non-linear functions. TLM tessellates the feature space into convex regions and fits a linear model within each region. We optimize the tessellation and the linear models using a hierarchical greedy partitioning. We evaluated TLM on the TIMIT dataset on the task of age prediction from voice, where it outperformed state-of-the-art deep learning models.
Abstract:Understanding how speech foundation models capture non-verbal cues is crucial for improving their interpretability and adaptability across diverse tasks. In our work, we analyze several prominent models such as Whisper, Seamless, Wav2Vec, HuBERT, and Qwen2-Audio focusing on their learned representations in both paralinguistic and non-paralinguistic tasks from the Dynamic-SUPERB benchmark. Our study addresses three key questions: (1) What non-verbal cues (e.g., speaker intent, emotion, environmental context) are captured? (2) How are these cues represented across different layers of the models? and (3) To what extent can these representations be effectively adapted to downstream tasks? To answer these questions, we first evaluate the models in a zero-shot setting, followed by fine-tuning on layer-wise features extracted from these models. Our results provide insights into the models' capacity for generalization, the characteristics of their layer-wise representations, and the degree of transformation required for downstream task adaptation. Our findings suggest that some of these models perform well on various tasks in zero-shot settings, despite not being explicitly trained for those tasks. We also observe that zero-shot performance correlates with better-learned representations. The analysis of layer-wise features demonstrates that some models exhibit a convex relationship between the separability of the learned representations and model depth, with different layers capturing task-specific features.
Abstract:The quality of human voice plays an important role across various fields like music, speech therapy, and communication, yet it lacks a universally accepted, objective definition. Instead, voice quality is referred to using subjective descriptors like "rough", "breathy" etc. Despite this subjectivity, extensive research across disciplines has linked these voice qualities to specific information about the speaker, such as health, physiological traits, and others. Current machine learning approaches for voice profiling rely on data-driven analysis without fully incorporating these established correlations, due to their qualitative nature. This paper aims to objectively quantify voice quality by synthesizing formulaic representations from past findings that correlate voice qualities to signal-processing metrics. We introduce formulae for 24 voice sub-qualities based on 25 signal properties, grounded in scientific literature. These formulae are tested against datasets with subjectively labeled voice qualities, demonstrating their validity.
Abstract:Speaker verification systems have seen significant advancements with the introduction of Multi-scale Feature Aggregation (MFA) architectures, such as MFA-Conformer and ECAPA-TDNN. These models leverage information from various network depths by concatenating intermediate feature maps before the pooling and projection layers, demonstrating that even shallower feature maps encode valuable speaker-specific information. Building upon this foundation, we propose a Multi-scale Feature Contrastive (MFCon) loss that directly enhances the quality of these intermediate representations. Our MFCon loss applies contrastive learning to all feature maps within the network, encouraging the model to learn more discriminative representations at the intermediate stage itself. By enforcing better feature map learning, we show that the resulting speaker embeddings exhibit increased discriminative power. Our method achieves a 9.05% improvement in equal error rate (EER) compared to the standard MFA-Conformer on the VoxCeleb-1O test set.
Abstract:We introduce a novel, general-purpose audio generation framework specifically designed for anomaly detection and localization. Unlike existing datasets that predominantly focus on industrial and machine-related sounds, our framework focuses a broader range of environments, particularly useful in real-world scenarios where only audio data are available, such as in video-derived or telephonic audio. To generate such data, we propose a new method inspired by the LLM-Modulo framework, which leverages large language models(LLMs) as world models to simulate such real-world scenarios. This tool is modular allowing a plug-and-play approach. It operates by first using LLMs to predict plausible real-world scenarios. An LLM further extracts the constituent sounds, the order and the way in which these should be merged to create coherent wholes. Much like the LLM-Modulo framework, we include rigorous verification of each output stage, ensuring the reliability of the generated data. The data produced using the framework serves as a benchmark for anomaly detection applications, potentially enhancing the performance of models trained on audio data, particularly in handling out-of-distribution cases. Our contributions thus fill a critical void in audio anomaly detection resources and provide a scalable tool for generating diverse, realistic audio data.
Abstract:Speaker verification systems are crucial for authenticating identity through voice. Traditionally, these systems focus on comparing feature vectors, overlooking the speech's content. However, this paper challenges this by highlighting the importance of phonetic dominance, a measure of the frequency or duration of phonemes, as a crucial cue in speaker verification. A novel Phoneme Debiasing Attention Framework (PDAF) is introduced, integrating with existing attention frameworks to mitigate biases caused by phonetic dominance. PDAF adjusts the weighting for each phoneme and influences feature extraction, allowing for a more nuanced analysis of speech. This approach paves the way for more accurate and reliable identity authentication through voice. Furthermore, by employing various weighting strategies, we evaluate the influence of phonetic features on the efficacy of the speaker verification system.
Abstract:Reference summaries for abstractive speech summarization require human annotation, which can be performed by listening to an audio recording or by reading textual transcripts of the recording. In this paper, we examine whether summaries based on annotators listening to the recordings differ from those based on annotators reading transcripts. Using existing intrinsic evaluation based on human evaluation, automatic metrics, LLM-based evaluation, and a retrieval-based reference-free method. We find that summaries are indeed different based on the source modality, and that speech-based summaries are more factually consistent and information-selective than transcript-based summaries. Meanwhile, transcript-based summaries are impacted by recognition errors in the source, and expert-written summaries are more informative and reliable. We make all the collected data and analysis code public(https://github.com/cmu-mlsp/interview_humanssum) to facilitate the reproduction of our work and advance research in this area.
Abstract:Recent literature uses language to build foundation models for audio. These Audio-Language Models (ALMs) are trained on a vast number of audio-text pairs and show remarkable performance in tasks including Text-to-Audio Retrieval, Captioning, and Question Answering. However, their ability to engage in more complex open-ended tasks, like Interactive Question-Answering, requires proficiency in logical reasoning -- a skill not yet benchmarked. We introduce the novel task of Audio Entailment to evaluate an ALM's deductive reasoning ability. This task assesses whether a text description (hypothesis) of audio content can be deduced from an audio recording (premise), with potential conclusions being entailment, neutral, or contradiction, depending on the sufficiency of the evidence. We create two datasets for this task with audio recordings sourced from two audio captioning datasets -- AudioCaps and Clotho -- and hypotheses generated using Large Language Models (LLMs). We benchmark state-of-the-art ALMs and find deficiencies in logical reasoning with both zero-shot and linear probe evaluations. Finally, we propose "caption-before-reason", an intermediate step of captioning that improves the zero-shot and linear-probe performance of ALMs by an absolute 6% and 3%, respectively.
Abstract:Speech Emotion Recognition (SER) has been traditionally formulated as a classification task. However, emotions are generally a spectrum whose distribution varies from situation to situation leading to poor Out-of-Domain (OOD) performance. We take inspiration from statistical formulation of Automatic Speech Recognition (ASR) and formulate the SER task as generating the most likely sequence of text tokens to infer emotion. The formulation breaks SER into predicting acoustic model features weighted by language model prediction. As an instance of this approach, we present SELM, an audio-conditioned language model for SER that predicts different emotion views. We train SELM on curated speech emotion corpus and test it on three OOD datasets (RAVDESS, CREMAD, IEMOCAP) not used in training. SELM achieves significant improvements over the state-of-the-art baselines, with 17% and 7% relative accuracy gains for RAVDESS and CREMA-D, respectively. Moreover, SELM can further boost its performance by Few-Shot Learning using a few annotated examples. The results highlight the effectiveness of our SER formulation, especially to improve performance in OOD scenarios.
Abstract:Graph prompt tuning has emerged as a promising paradigm to effectively transfer general graph knowledge from pre-trained models to various downstream tasks, particularly in few-shot contexts. However, its susceptibility to backdoor attacks, where adversaries insert triggers to manipulate outcomes, raises a critical concern. We conduct the first study to investigate such vulnerability, revealing that backdoors can disguise benign graph prompts, thus evading detection. We introduce Krait, a novel graph prompt backdoor. Specifically, we propose a simple yet effective model-agnostic metric called label non-uniformity homophily to select poisoned candidates, significantly reducing computational complexity. To accommodate diverse attack scenarios and advanced attack types, we design three customizable trigger generation methods to craft prompts as triggers. We propose a novel centroid similarity-based loss function to optimize prompt tuning for attack effectiveness and stealthiness. Experiments on four real-world graphs demonstrate that Krait can efficiently embed triggers to merely 0.15% to 2% of training nodes, achieving high attack success rates without sacrificing clean accuracy. Notably, in one-to-one and all-to-one attacks, Krait can achieve 100% attack success rates by poisoning as few as 2 and 22 nodes, respectively. Our experiments further show that Krait remains potent across different transfer cases, attack types, and graph neural network backbones. Additionally, Krait can be successfully extended to the black-box setting, posing more severe threats. Finally, we analyze why Krait can evade both classical and state-of-the-art defenses, and provide practical insights for detecting and mitigating this class of attacks.