Abstract:We propose a hypothesis disparity regularized mutual information maximization~(HDMI) approach to tackle unsupervised hypothesis transfer -- as an effort towards unifying hypothesis transfer learning (HTL) and unsupervised domain adaptation (UDA) -- where the knowledge from a source domain is transferred solely through hypotheses and adapted to the target domain in an unsupervised manner. In contrast to the prevalent HTL and UDA approaches that typically use a single hypothesis, HDMI employs multiple hypotheses to leverage the underlying distributions of the source and target hypotheses. To better utilize the crucial relationship among different hypotheses -- as opposed to unconstrained optimization of each hypothesis independently -- while adapting to the unlabeled target domain through mutual information maximization, HDMI incorporates a hypothesis disparity regularization that coordinates the target hypotheses jointly learn better target representations while preserving more transferable source knowledge with better-calibrated prediction uncertainty. HDMI achieves state-of-the-art adaptation performance on benchmark datasets for UDA in the context of HTL, without the need to access the source data during the adaptation.
Abstract:We present an approach for unsupervised domain adaptation---with a strong focus on practical considerations of within-domain class imbalance and between-domain class distribution shift---from a class-conditioned domain alignment perspective. Current methods for class-conditioned domain alignment aim to explicitly minimize a loss function based on pseudo-label estimations of the target domain. However, these methods suffer from pseudo-label bias in the form of error accumulation. We propose a method that removes the need for explicit optimization of model parameters from pseudo-labels directly. Instead, we present a sampling-based implicit alignment approach, where the sample selection procedure is implicitly guided by the pseudo-labels. Theoretical analysis reveals the existence of a domain-discriminator shortcut in misaligned classes, which is addressed by the proposed implicit alignment approach to facilitate domain-adversarial learning. Empirical results and ablation studies confirm the effectiveness of the proposed approach, especially in the presence of within-domain class imbalance and between-domain class distribution shift.
Abstract:Learning in non-stationary environments is one of the biggest challenges in machine learning. Non-stationarity can be caused by either task drift, i.e., the drift in the conditional distribution of labels given the input data, or the domain drift, i.e., the drift in the marginal distribution of the input data. This paper aims to tackle this challenge in the context of continuous domain adaptation, where the model is required to learn new tasks adapted to new domains in a non-stationary environment while maintaining previously learned knowledge. To deal with both drifts, we propose variational domain-agnostic feature replay, an approach that is composed of three components: an inference module that filters the input data into domain-agnostic representations, a generative module that facilitates knowledge transfer, and a solver module that applies the filtered and transferable knowledge to solve the queries. We address the two fundamental scenarios in continuous domain adaptation, demonstrating the effectiveness of our proposed approach for practical usage.
Abstract:Current deep learning based text classification methods are limited by their ability to achieve fast learning and generalization when the data is scarce. We address this problem by integrating a meta-learning procedure that uses the knowledge learned across many tasks as an inductive bias towards better natural language understanding. Based on the Model-Agnostic Meta-Learning framework (MAML), we introduce the Attentive Task-Agnostic Meta-Learning (ATAML) algorithm for text classification. The essential difference between MAML and ATAML is in the separation of task-agnostic representation learning and task-specific attentive adaptation. The proposed ATAML is designed to encourage task-agnostic representation learning by way of task-agnostic parameterization and facilitate task-specific adaptation via attention mechanisms. We provide evidence to show that the attention mechanism in ATAML has a synergistic effect on learning performance. In comparisons with models trained from random initialization, pretrained models and meta trained MAML, our proposed ATAML method generalizes better on single-label and multi-label classification tasks in miniRCV1 and miniReuters-21578 datasets.
Abstract:Understanding and discovering knowledge from GPS (Global Positioning System) traces of human activities is an essential topic in mobility-based urban computing. We propose TrajectoryNet-a neural network architecture for point-based trajectory classification to infer real world human transportation modes from GPS traces. To overcome the challenge of capturing the underlying latent factors in the low-dimensional and heterogeneous feature space imposed by GPS data, we develop a novel representation that embeds the original feature space into another space that can be understood as a form of basis expansion. We also enrich the feature space via segment-based information and use Maxout activations to improve the predictive power of Recurrent Neural Networks (RNNs). We achieve over 98% classification accuracy when detecting four types of transportation modes, outperforming existing models without additional sensory data or location-based prior knowledge.
Abstract:Identifying user's identity is a key problem in many data mining applications, such as product recommendation, customized content delivery and criminal identification. Given a set of accounts from the same or different social network platforms, user identification attempts to identify all accounts belonging to the same person. A commonly used solution is to build the relationship among different accounts by exploring their collective patterns, e.g., user profile, writing style, similar comments. However, this kind of method doesn't work well in many practical scenarios, since the information posted explicitly by users may be false due to various reasons. In this paper, we re-inspect the user identification problem from a novel perspective, i.e., identifying user's identity by matching his/her cameras. The underlying assumption is that multiple accounts belonging to the same person contain the same or similar camera fingerprint information. The proposed framework, called User Camera Identification (UCI), is based on camera fingerprints, which takes fully into account the problems of multiple cameras and reposting behaviors.