Abstract:Specialized lexicons are collections of words with associated constraints such as special definitions, specific roles, and intended target audiences. These constraints are necessary for content generation and documentation tasks (e.g., writing technical manuals or children's books), where the goal is to reduce the ambiguity of text content and increase its overall readability for a specific group of audience. Understanding how large language models can capture these constraints can help researchers build better, more impactful tools for wider use beyond the NLP community. Towards this end, we introduce SpeciaLex, a benchmark for evaluating a language model's ability to follow specialized lexicon-based constraints across 18 diverse subtasks with 1,285 test instances covering core tasks of Checking, Identification, Rewriting, and Open Generation. We present an empirical evaluation of 15 open and closed-source LLMs and discuss insights on how factors such as model scale, openness, setup, and recency affect performance upon evaluating with the benchmark.
Abstract:Requiring a Large Language Model to generate intermediary reasoning steps has been shown to be an effective way of boosting performance. In fact, it has been found that instruction tuning on these intermediary reasoning steps improves model performance. In this work, we present a novel method of further improving performance by requiring models to compare multiple reasoning chains before generating a solution in a single inference step. We call this method Divergent CoT (DCoT). We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, LLMs. Through a rigorous set of experiments spanning a wide range of tasks that require various reasoning types, we show that fine-tuning on DCoT consistently improves performance over the CoT baseline across model families and scales (1.3B to 70B). Through a combination of empirical and manual evaluation, we additionally show that these performance gains stem from models generating multiple divergent reasoning chains in a single inference step, indicative of the enabling of self-correction in language models. Our code and data are publicly available at https://github.com/UKPLab/arxiv2024-divergent-cot.
Abstract:We present a novel extension to Retrieval Augmented Generation with the goal of mitigating factual inaccuracies in the output of large language models. Specifically, our method draws on the cognitive linguistic theory of frame semantics for the indexing and retrieval of factual information relevant to helping large language models answer queries. We conduct experiments to demonstrate the effectiveness of this method both in terms of retrieval effectiveness and in terms of the relevance of the frames and frame relations automatically generated. Our results show that this novel mechanism of Frame Semantic-based retrieval, designed to improve Retrieval Augmented Generation (FS-RAG), is effective and offers potential for providing data-driven insights into frame semantics theory. We provide open access to our program code and prompts.
Abstract:This paper measures the skew in how well two families of LLMs represent diverse geographic populations. A spatial probing task is used with geo-referenced corpora to measure the degree to which pre-trained language models from the OPT and BLOOM series represent diverse populations around the world. Results show that these models perform much better for some populations than others. In particular, populations across the US and the UK are represented quite well while those in South and Southeast Asia are poorly represented. Analysis shows that both families of models largely share the same skew across populations. At the same time, this skew cannot be fully explained by sociolinguistic factors, economic factors, or geographic factors. The basic conclusion from this analysis is that pre-trained models do not equally represent the world's population: there is a strong skew towards specific geographic populations. This finding challenges the idea that a single model can be used for all populations.
Abstract:Code-switching is a prevalent linguistic phenomenon in which multilingual individuals seamlessly alternate between languages. Despite its widespread use online and recent research trends in this area, research in code-switching presents unique challenges, primarily stemming from the scarcity of labelled data and available resources. In this study we investigate how pre-trained Language Models handle code-switched text in three dimensions: a) the ability of PLMs to detect code-switched text, b) variations in the structural information that PLMs utilise to capture code-switched text, and c) the consistency of semantic information representation in code-switched text. To conduct a systematic and controlled evaluation of the language models in question, we create a novel dataset of well-formed naturalistic code-switched text along with parallel translations into the source languages. Our findings reveal that pre-trained language models are effective in generalising to code-switched text, shedding light on the abilities of these models to generalise representations to CS corpora. We release all our code and data including the novel corpus at https://github.com/francesita/code-mixed-probes.
Abstract:Domain experts across engineering, healthcare, and education follow strict standards for producing quality content such as technical manuals, medication instructions, and children's reading materials. However, current works in controllable text generation have yet to explore using these standards as references for control. Towards this end, we introduce Standardize, a retrieval-style in-context learning-based framework to guide large language models to align with expert-defined standards. Focusing on English language standards in the education domain as a use case, we consider the Common European Framework of Reference for Languages (CEFR) and Common Core Standards (CCS) for the task of open-ended content generation. Our findings show that models can gain 40% to 100% increase in precise accuracy for Llama2 and GPT-4, respectively, demonstrating that the use of knowledge artifacts extracted from standards and integrating them in the generation process can effectively guide models to produce better standard-aligned content.
Abstract:All existing transformer-based approaches to NLP using subword tokenisation algorithms encode whitespace (word boundary information) through the use of special space symbols (such as \#\# or \_) forming part of tokens. These symbols have been shown to a) lead to reduced morphological validity of tokenisations, and b) give substantial vocabulary redundancy. As such, removing these symbols has been shown to have a beneficial effect on the processing of morphologically complex words for transformer encoders in the pretrain-finetune paradigm. In this work, we explore whether word boundary information is at all useful to such models. In particular, we train transformer encoders across four different training scales, and investigate several alternative approaches to including word boundary information, evaluating on a range of tasks across different domains and problem set-ups: GLUE (for sentence-level classification), NER (for token-level classification), and two classification datasets involving complex words (Superbizarre and FLOTA). Overall, through an extensive experimental setup that includes the pre-training of 29 models, we find no substantial improvements from our alternative approaches, suggesting that modifying tokenisers to remove word boundary information isn't leading to a loss of useful information.
Abstract:Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narratives$-$tasks that teachers perform$-$using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5$-$which have shown promising results.
Abstract:Large language models have exhibited emergent abilities, demonstrating exceptional performance across diverse tasks for which they were not explicitly trained, including those that require complex reasoning abilities. The emergence of such abilities carries profound implications for the future direction of research in NLP, especially as the deployment of such models becomes more prevalent. However, one key challenge is that the evaluation of these abilities is often confounded by competencies that arise in models through alternative prompting techniques, such as in-context learning and instruction following, which also emerge as the models are scaled up. In this study, we provide the first comprehensive examination of these emergent abilities while accounting for various potentially biasing factors that can influence the evaluation of models. We conduct rigorous tests on a set of 18 models, encompassing a parameter range from 60 million to 175 billion parameters, across a comprehensive set of 22 tasks. Through an extensive series of over 1,000 experiments, we provide compelling evidence that emergent abilities can primarily be ascribed to in-context learning. We find no evidence for the emergence of reasoning abilities, thus providing valuable insights into the underlying mechanisms driving the observed abilities and thus alleviating safety concerns regarding their use.
Abstract:Recent progress in deep learning and natural language processing has given rise to powerful models that are primarily trained on a cloze-like task and show some evidence of having access to substantial linguistic information, including some constructional knowledge. This groundbreaking discovery presents an exciting opportunity for a synergistic relationship between computational methods and Construction Grammar research. In this chapter, we explore three distinct approaches to the interplay between computational methods and Construction Grammar: (i) computational methods for text analysis, (ii) computational Construction Grammar, and (iii) deep learning models, with a particular focus on language models. We touch upon the first two approaches as a contextual foundation for the use of computational methods before providing an accessible, yet comprehensive overview of deep learning models, which also addresses reservations construction grammarians may have. Additionally, we delve into experiments that explore the emergence of constructionally relevant information within these models while also examining the aspects of Construction Grammar that may pose challenges for these models. This chapter aims to foster collaboration between researchers in the fields of natural language processing and Construction Grammar. By doing so, we hope to pave the way for new insights and advancements in both these fields.