Abstract:Large Language Models, despite their significant capabilities, are known to fail in surprising and unpredictable ways. Evaluating their true `understanding' of language is particularly challenging due to the extensive web-scale data they are trained on. Therefore, we construct an evaluation to systematically assess natural language understanding (NLU) in LLMs by leveraging Construction Grammar (CxG), which provides insights into the meaning captured by linguistic elements known as constructions (Cxns). CxG is well-suited for this purpose because provides a theoretical basis to construct targeted evaluation sets. These datasets are carefully constructed to include examples which are unlikely to appear in pre-training data, yet intuitive and easy for humans to understand, enabling a more targeted and reliable assessment. Our experiments focus on downstream natural language inference and reasoning tasks by comparing LLMs' understanding of the underlying meanings communicated through 8 unique Cxns with that of humans. The results show that while LLMs demonstrate some knowledge of constructional information, even the latest models including GPT-o1 struggle with abstract meanings conveyed by these Cxns, as demonstrated in cases where test sentences are dissimilar to their pre-training data. We argue that such cases provide a more accurate test of true language understanding, highlighting key limitations in LLMs' semantic capabilities. We make our novel dataset and associated experimental data including prompts and model responses publicly available.
Abstract:Work on shallow discourse parsing in English has focused on the Wall Street Journal corpus, the only large-scale dataset for the language in the PDTB framework. However, the data is not openly available, is restricted to the news domain, and is by now 35 years old. In this paper, we present and evaluate a new open-access, multi-genre benchmark for PDTB-style shallow discourse parsing, based on the existing UD English GUM corpus, for which discourse relation annotations in other frameworks already exist. In a series of experiments on cross-domain relation classification, we show that while our dataset is compatible with PDTB, substantial out-of-domain degradation is observed, which can be alleviated by joint training on both datasets.
Abstract:The Universal Dependencies (UD) project has created an invaluable collection of treebanks with contributions in over 140 languages. However, the UD annotations do not tell the full story. Grammatical constructions that convey meaning through a particular combination of several morphosyntactic elements -- for example, interrogative sentences with special markers and/or word orders -- are not labeled holistically. We argue for (i) augmenting UD annotations with a 'UCxn' annotation layer for such meaning-bearing grammatical constructions, and (ii) approaching this in a typologically informed way so that morphosyntactic strategies can be compared across languages. As a case study, we consider five construction families in ten languages, identifying instances of each construction in UD treebanks through the use of morphosyntactic patterns. In addition to findings regarding these particular constructions, our study yields important insights on methodology for describing and identifying constructions in language-general and language-particular ways, and lays the foundation for future constructional enrichment of UD treebanks.