Abstract:Diffusion models have shown promise in text generation but often struggle with generating long, coherent, and contextually accurate text. Token-level diffusion overlooks word-order dependencies and enforces short output windows, while passage-level diffusion struggles with learning robust representation for long-form text. To address these challenges, we propose Segment-Level Diffusion (SLD), a framework that enhances diffusion-based text generation through text segmentation, robust representation training with adversarial and contrastive learning, and improved latent-space guidance. By segmenting long-form outputs into separate latent representations and decoding them with an autoregressive decoder, SLD simplifies diffusion predictions and improves scalability. Experiments on XSum, ROCStories, DialogSum, and DeliData demonstrate that SLD achieves competitive or superior performance in fluency, coherence, and contextual compatibility across automatic and human evaluation metrics comparing with other diffusion and autoregressive baselines. Ablation studies further validate the effectiveness of our segmentation and representation learning strategies.
Abstract:The conformity effect describes the tendency of individuals to align their responses with the majority. Studying this bias in large language models (LLMs) is crucial, as LLMs are increasingly used in various information-seeking and decision-making tasks as conversation partners to improve productivity. Thus, conformity to incorrect responses can compromise their effectiveness. In this paper, we adapt psychological experiments to examine the extent of conformity in state-of-the-art LLMs. Our findings reveal that all models tested exhibit varying levels of conformity toward the majority, regardless of their initial choice or correctness, across different knowledge domains. Notably, we are the first to show that LLMs are more likely to conform when they are more uncertain in their own prediction. We further explore factors that influence conformity, such as training paradigms and input characteristics, finding that instruction-tuned models are less susceptible to conformity, while increasing the naturalness of majority tones amplifies conformity. Finally, we propose two interventions--Devil's Advocate and Question Distillation--to mitigate conformity, providing insights into building more robust language models.
Abstract:Split Learning (SL) has emerged as a practical and efficient alternative to traditional federated learning. While previous attempts to attack SL have often relied on overly strong assumptions or targeted easily exploitable models, we seek to develop more practical attacks. We introduce SDAR, a novel attack framework against SL with an honest-but-curious server. SDAR leverages auxiliary data and adversarial regularization to learn a decodable simulator of the client's private model, which can effectively infer the client's private features under the vanilla SL, and both features and labels under the U-shaped SL. We perform extensive experiments in both configurations to validate the effectiveness of our proposed attacks. Notably, in challenging but practical scenarios where existing passive attacks struggle to reconstruct the client's private data effectively, SDAR consistently achieves attack performance comparable to active attacks. On CIFAR-10, at the deep split level of 7, SDAR achieves private feature reconstruction with less than 0.025 mean squared error in both the vanilla and the U-shaped SL, and attains a label inference accuracy of over 98% in the U-shaped setting, while existing attacks fail to produce non-trivial results.
Abstract:Graph neural networks (GNNs) have gained an increasing amount of popularity due to their superior capability in learning node embeddings for various graph inference tasks, but training them can raise privacy concerns. To address this, we propose using link local differential privacy over decentralized nodes, enabling collaboration with an untrusted server to train GNNs without revealing the existence of any link. Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology using Bayesian estimation, alleviating the negative impact of LDP on the accuracy of the trained GNNs. We bound the mean absolute error of the inferred link probabilities against the ground truth graph topology. We then propose two variants of our LDP mechanism complementing each other in different privacy settings, one of which estimates fewer links under lower privacy budgets to avoid false positive link estimates when the uncertainty is high, while the other utilizes more information and performs better given relatively higher privacy budgets. Furthermore, we propose a hybrid variant that combines both strategies and is able to perform better across different privacy budgets. Extensive experiments show that our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
Abstract:Diverse data formats and ontologies of task-oriented dialogue (TOD) datasets hinder us from developing general dialogue models that perform well on many datasets and studying knowledge transfer between datasets. To address this issue, we present ConvLab-3, a flexible dialogue system toolkit based on a unified TOD data format. In ConvLab-3, different datasets are transformed into one unified format and loaded by models in the same way. As a result, the cost of adapting a new model or dataset is significantly reduced. Compared to the previous releases of ConvLab (Lee et al., 2019b; Zhu et al., 2020b), ConvLab-3 allows developing dialogue systems with much more datasets and enhances the utility of the reinforcement learning (RL) toolkit for dialogue policies. To showcase the use of ConvLab-3 and inspire future work, we present a comprehensive study with various settings. We show the benefit of pre-training on other datasets for few-shot fine-tuning and RL, and encourage evaluating policy with diverse user simulators.