Abstract:In this paper, we introduce a novel approach for large language model merging via black-box multi-objective optimization algorithms. The goal of model merging is to combine multiple models, each excelling in different tasks, into a single model that outperforms any of the individual source models. However, model merging faces two significant challenges: First, existing methods rely heavily on human intuition and customized strategies. Second, parameter conflicts often arise during merging, and while methods like DARE [1] can alleviate this issue, they tend to stochastically drop parameters, risking the loss of important delta parameters. To address these challenges, we propose the MM-MO method, which automates the search for optimal merging configurations using multi-objective optimization algorithms, eliminating the need for human intuition. During the configuration searching process, we use estimated performance across multiple diverse tasks as optimization objectives in order to alleviate the parameter conflicting between different source models without losing crucial delta parameters. We conducted comparative experiments with other mainstream model merging methods, demonstrating that our method consistently outperforms them. Moreover, our experiments reveal that even task types not explicitly targeted as optimization objectives show performance improvements, indicating that our method enhances the overall potential of the model rather than merely overfitting to specific task types. This approach provides a significant advancement in model merging techniques, offering a robust and plug-and-play solution for integrating diverse models into a unified, high-performing model.
Abstract:Large Language Models (LLMs) have achieved significant progress across various fields and have exhibited strong potential in evolutionary computation, such as generating new solutions and automating algorithm design. Surrogate-assisted selection is a core step in evolutionary algorithms to solve expensive optimization problems by reducing the number of real evaluations. Traditionally, this has relied on conventional machine learning methods, leveraging historical evaluated evaluations to predict the performance of new solutions. In this work, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training. Specifically, we formulate model-assisted selection as a classification and regression problem, utilizing LLMs to directly evaluate the quality of new solutions based on historical data. This involves predicting whether a solution is good or bad, or approximating its value. This approach is then integrated into evolutionary algorithms, termed LLM-assisted EA (LAEA). Detailed experiments compared the visualization results of 2D data from 9 mainstream LLMs, as well as their performance on optimization problems. The experimental results demonstrate that LLMs have significant potential as surrogate models in evolutionary computation, achieving performance comparable to traditional surrogate models only using inference. This work offers new insights into the application of LLMs in evolutionary computation. Code is available at: https://github.com/hhyqhh/LAEA.git
Abstract:Surrogate-assisted Evolutionary Algorithm (SAEA) is an essential method for solving expensive expensive problems. Utilizing surrogate models to substitute the optimization function can significantly reduce reliance on the function evaluations during the search process, thereby lowering the optimization costs. The construction of surrogate models is a critical component in SAEAs, with numerous machine learning algorithms playing a pivotal role in the model-building phase. This paper introduces Kolmogorov-Arnold Networks (KANs) as surrogate models within SAEAs, examining their application and effectiveness. We employ KANs for regression and classification tasks, focusing on the selection of promising solutions during the search process, which consequently reduces the number of expensive function evaluations. Experimental results indicate that KANs demonstrate commendable performance within SAEAs, effectively decreasing the number of function calls and enhancing the optimization efficiency. The relevant code is publicly accessible and can be found in the GitHub repository.
Abstract:Black-box optimization problems, which are common in many real-world applications, require optimization through input-output interactions without access to internal workings. This often leads to significant computational resources being consumed for simulations. Bayesian Optimization (BO) and Surrogate-Assisted Evolutionary Algorithm (SAEA) are two widely used gradient-free optimization techniques employed to address such challenges. Both approaches follow a similar iterative procedure that relies on surrogate models to guide the search process. This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods, as well as the impact of model inaccuracies on algorithmic performance. A novel model-assisted strategy is introduced, which utilizes unevaluated solutions to generate offspring, leveraging the population-based search capabilities of evolutionary algorithm to enhance the effectiveness of model-assisted optimization. Experimental results demonstrate that the proposed approach outperforms mainstream Bayesian optimization algorithms in terms of accuracy and efficiency.
Abstract:Molecular retrosynthesis is a significant and complex problem in the field of chemistry, however, traditional manual synthesis methods not only need well-trained experts but also are time-consuming. With the development of big data and machine learning, artificial intelligence (AI) based retrosynthesis is attracting more attention and is becoming a valuable tool for molecular retrosynthesis. At present, Monte Carlo tree search is a mainstream search framework employed to address this problem. Nevertheless, its search efficiency is compromised by its large search space. Therefore, we propose a novel approach for retrosynthetic route planning based on evolutionary optimization, marking the first use of Evolutionary Algorithm (EA) in the field of multi-step retrosynthesis. The proposed method involves modeling the retrosynthetic problem into an optimization problem, defining the search space and operators. Additionally, to improve the search efficiency, a parallel strategy is implemented. The new approach is applied to four case products, and is compared with Monte Carlo tree search. The experimental results show that, in comparison to the Monte Carlo tree search algorithm, EA significantly reduces the number of calling single-step model by an average of 53.9%. The time required to search three solutions decreased by an average of 83.9%, and the number of feasible search routes increases by 5 times.
Abstract:Surrogate-assisted evolutionary algorithms (SAEAs) hold significant importance in resolving expensive optimization problems~(EOPs). Extensive efforts have been devoted to improving the efficacy of SAEAs through the development of proficient model-assisted selection methods. However, generating high-quality solutions is a prerequisite for selection. The fundamental paradigm of evaluating a limited number of solutions in each generation within SAEAs reduces the variance of adjacent populations, thus impacting the quality of offspring solutions. This is a frequently encountered issue, yet it has not gained widespread attention. This paper presents a framework using unevaluated solutions to enhance the efficiency of SAEAs. The surrogate model is employed to identify high-quality solutions for direct generation of new solutions without evaluation. To ensure dependable selection, we have introduced two tailored relation models for the selection of the optimal solution and the unevaluated population. A comprehensive experimental analysis is performed on two test suites, which showcases the superiority of the relation model over regression and classification models in the selection phase. Furthermore, the surrogate-selected unevaluated solutions with high potential have been shown to significantly enhance the efficiency of the algorithm.
Abstract:Self-supervised learning has shown its promising capability in graph representation learning in recent work. Most existing pre-training strategies usually choose the popular Graph neural networks (GNNs), which can be seen as a special form of low-pass filter, fail to effectively capture heterophily. In this paper, we first present an experimental investigation exploring the performance of low-pass and high-pass filters in heterophily graph classification, where the results clearly show that high-frequency signal is important for learning heterophily graph representation. On the other hand, it is still unclear how to effectively capture the structural pattern of graphs and how to measure the capability of the self-supervised pre-training strategy in capturing graph structure. To address the problem, we first design a quantitative metric to Measure Graph Structure (MGS), which analyzes correlation between structural similarity and embedding similarity of graph pairs. Then, to enhance the graph structural information captured by self-supervised learning, we propose a novel self-supervised strategy for Pre-training GNNs based on the Metric (PGM). Extensive experiments validate our pre-training strategy achieves state-of-the-art performance for molecular property prediction and protein function prediction. In addition, we find choosing the suitable filter sometimes may be better than designing good pre-training strategies for heterophily graph classification.
Abstract:Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.