Abstract:Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. Recent advances in GSP have enabled the learning of graph structures from observed signals, but these methods often struggle with time-varying systems and real-time applications. Adaptive filtering techniques, while effective for online learning, have seen limited application in graph topology estimation from a GSP perspective. To this end, we introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO) from multivariate time series. The GSO is estimated from an adaptive time-vertex autoregressive model through recursive update formulae designed to address sparsity, shift-invariance and bias. Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation compared to baseline adaptive vector autoregressive models. In addition, our online variable splitting approach for enforcing sparsity enables near-perfect precision in identifying causal connections while maintaining low false positive rates upon optimisation of the forecast error. Finally, AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug. AdaCGP is shown to be able to identify the stability of critical conduction patterns that may be maintaining the arrhythmia in an intuitive way, together with its potential to support diagnosis and treatment strategies.
Abstract:We propose a novel framework that leverages large language models (LLMs) to guide the rank selection in tensor network models for higher-order data analysis. By utilising the intrinsic reasoning capabilities and domain knowledge of LLMs, our approach offers enhanced interpretability of the rank choices and can effectively optimise the objective function. This framework enables users without specialised domain expertise to utilise tensor network decompositions and understand the underlying rationale within the rank selection process. Experimental results validate our method on financial higher-order datasets, demonstrating interpretable reasoning, strong generalisation to unseen test data, and its potential for self-enhancement over successive iterations. This work is placed at the intersection of large language models and higher-order data analysis.
Abstract:Respiratory rate (RR) is a critical health indicator often monitored under inconvenient scenarios, limiting its practicality for continuous monitoring. Photoplethysmography (PPG) sensors, increasingly integrated into wearable devices, offer a chance to continuously estimate RR in a portable manner. In this paper, we propose RespDiff, an end-to-end multi-scale RNN diffusion model for respiratory waveform estimation from PPG signals. RespDiff does not require hand-crafted features or the exclusion of low-quality signal segments, making it suitable for real-world scenarios. The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform. Additionally, a spectral loss term is introduced to optimize the model further. Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation while others range from 1.66 to 2.15 bpm, showing its potential for robust and accurate respiratory monitoring in real-world applications.
Abstract:There are multiple sources of financial news online which influence market movements and trader's decisions. This highlights the need for accurate sentiment analysis, in addition to having appropriate algorithmic trading techniques, to arrive at better informed trading decisions. Standard lexicon based sentiment approaches have demonstrated their power in aiding financial decisions. However, they are known to suffer from issues related to context sensitivity and word ordering. Large Language Models (LLMs) can also be used in this context, but they are not finance-specific and tend to require significant computational resources. To facilitate a finance specific LLM framework, we introduce a novel approach based on the Llama 2 7B foundational model, in order to benefit from its generative nature and comprehensive language manipulation. This is achieved by fine-tuning the Llama2 7B model on a small portion of supervised financial sentiment analysis data, so as to jointly handle the complexities of financial lexicon and context, and further equipping it with a neural network based decision mechanism. Such a generator-classifier scheme, referred to as FinLlama, is trained not only to classify the sentiment valence but also quantify its strength, thus offering traders a nuanced insight into financial news articles. Complementing this, the implementation of parameter-efficient fine-tuning through LoRA optimises trainable parameters, thus minimising computational and memory requirements, without sacrificing accuracy. Simulation results demonstrate the ability of the proposed FinLlama to provide a framework for enhanced portfolio management decisions and increased market returns. These results underpin the ability of FinLlama to construct high-return portfolios which exhibit enhanced resilience, even during volatile periods and unpredictable market events.
Abstract:A novel tensor decomposition framework, termed Tensor Star (TS) decomposition, is proposed which represents a new type of tensor network decomposition based on tensor contractions. This is achieved by connecting the core tensors in a ring shape, whereby the core tensors act as skip connections between the factor tensors and allow for direct correlation characterisation between any two arbitrary dimensions. Uniquely, this makes it possible to decompose an order-$N$ tensor into $N$ order-$3$ factor tensors $\{\mathcal{G}_{k}\}_{k=1}^{N}$ and $N$ order-$4$ core tensors $\{\mathcal{C}_{k}\}_{k=1}^{N}$, which are arranged in a star shape. Unlike the class of Tensor Train (TT) decompositions, these factor tensors are not directly connected to one another. The so obtained core tensors also enable consecutive factor tensors to have different latent ranks. In this way, the TS decomposition alleviates the "curse of dimensionality" and controls the "curse of ranks", exhibiting a storage complexity which scales linearly with the number of dimensions and as the fourth power of the ranks.
Abstract:The 2024 ICASSP Auditory EEG Signal Processing Grand Challenge concerns the decoding of electroencephalography (EEG) measurements taken from participants who listened to speech material. This work details our solution to the match-mismatch sub-task: given a short temporal segment of EEG recordings and several candidate speech segments, the task is to classify which of the speech segments was time-aligned with the EEG signals. We show that high-frequency gamma-band responses to the speech envelope can be detected with a high accuracy. By jointly assessing gamma-band responses and low-frequency envelope tracking, we develop a match-mismatch decoder which placed first in this task.
Abstract:Many people with hearing loss struggle to comprehend speech in crowded auditory scenes, even when they are using hearing aids. Future hearing technologies which can identify the focus of a listener's auditory attention, and selectively amplify that sound alone, could improve the experience that this patient group has with their hearing aids. In this work, we present the results of our experiments with an ultra-wearable in-ear electroencephalography (EEG) monitoring device. Participants listened to two competing speakers in an auditory attention experiment whilst their EEG was recorded. We show that typical neural responses to the speech envelope, as well as its onsets, can be recovered from such a device, and that the morphology of the recorded responses is indeed modulated by selective attention to speech. Features of the attended and ignored speech stream can also be reconstructed from the EEG recordings, with the reconstruction quality serving as a marker of selective auditory attention. Using the stimulus-reconstruction method, we show that with this device auditory attention can be decoded from short segments of EEG recordings which are of just a few seconds in duration. The results provide further evidence that ear-EEG systems offer good prospects for wearable auditory monitoring as well as future cognitively-steered hearing aids.
Abstract:The electroencephalogram (EEG) offers a non-invasive means by which a listener's auditory system may be monitored during continuous speech perception. Reliable auditory-EEG decoders could facilitate the objective diagnosis of hearing disorders, or find applications in cognitively-steered hearing aids. Previously, we developed decoders for the ICASSP Auditory EEG Signal Processing Grand Challenge (SPGC). These decoders aimed to solve the match-mismatch task: given a short temporal segment of EEG recordings, and two candidate speech segments, the task is to identify which of the two speech segments is temporally aligned, or matched, with the EEG segment. The decoders made use of cortical responses to the speech envelope, as well as speech-related frequency-following responses, to relate the EEG recordings to the speech stimuli. Here we comprehensively document the methods by which the decoders were developed. We extend our previous analysis by exploring the association between speaker characteristics (pitch and sex) and classification accuracy, and provide a full statistical analysis of the final performance of the decoders as evaluated on a heldout portion of the dataset. Finally, the generalisation capabilities of the decoders are characterised, by evaluating them using an entirely different dataset which contains EEG recorded under a variety of speech-listening conditions. The results show that the match-mismatch decoders achieve accurate and robust classification accuracies, and they can even serve as auditory attention decoders without additional training.
Abstract:Pulsative signals such as the electrocardiogram (ECG) are extensively collected as part of routine clinical care. However, noisy and poor-quality recordings, leading to missing values, are a major issue for signals collected using mobile health systems, decreasing the signal quality and affecting the automated downstream tasks. Recent studies have explored imputation of missing values for ECG with probabilistic time-series models. Nevertheless, in comparison with the deterministic models, their performance is still limited, as the variations across subjects and heart-beat relationships are not explicitly considered in the training objective. In this work, to improve the ECG imputation and forecasting accuracy with probabilistic models, we present an template-guided denoising diffusion probabilistic model, PulseDiff, which is conditioned an informative prior for a range of health conditions. Specifically, 1) we first extract a subject-level pulsative template from the observation as an informative prior of missing values, which captures the personal characteristics; 2) we then add beat-level stochastic shift terms on the template for prior augmentation, which considers the beat-level variance of positioning and amplitude; 3) we finally design a confidence score to consider the health condition of subject, which ensures our prior is provided in a safe way. Experiments with the PTBXL dataset reveal PulseDiff improves the performance of two strong DDPMs baseline models, CSDI and SSSD$^{S4}$, verifying our method guides the generation of DDPMs while managing the uncertainty. When combining with SSSD$^{S4}$, our PulseDiff method outperforms the leading deterministic model for short-interval missing data and is comparable for long-interval data loss.
Abstract:Multiagent systems aim to accomplish highly complex learning tasks through decentralised consensus seeking dynamics and their use has garnered a great deal of attention in the signal processing and computational intelligence societies. This article examines the behaviour of multiagent networked systems with nonlinear filtering/learning dynamics. To this end, a general formulation for the actions of an agent in multiagent networked systems is presented and conditions for achieving a cohesive learning behaviour is given. Importantly, application of the so derived framework in distributed and federated learning scenarios are presented.